1,962 research outputs found

    On Reliability of Smart Grid Neighborhood Area Networks

    Get PDF
    With the integration of the advanced computing and communication technologies, smart grid system is dedicated to enhance the efficiency and the reliability of future power systems greatly through renewable energy resources, as well as distributed communication intelligence and demand response. Along with advanced features of smart grid, the reliability of smart grid communication system emerges to be a critical issue, since millions of smart devices are interconnected through communication networks throughout critical power facilities, which has an immediate and direct impact on the reliability of the entire power infrastructure. In this paper, we present a comprehensive survey of reliability issues posted by the smart grid with a focus on communications in support of neighborhood area networks (NAN). Specifically, we focus on network architecture, reliability requirements and challenges of both communication networks and systems, secure countermeasures, and case studies in smart grid NAN. We aim to provide a deep understanding of reliability challenges and effective solutions toward reliability issues in smart grid NAN

    Distributed Hybrid Simulation of the Internet of Things and Smart Territories

    Full text link
    This paper deals with the use of hybrid simulation to build and compose heterogeneous simulation scenarios that can be proficiently exploited to model and represent the Internet of Things (IoT). Hybrid simulation is a methodology that combines multiple modalities of modeling/simulation. Complex scenarios are decomposed into simpler ones, each one being simulated through a specific simulation strategy. All these simulation building blocks are then synchronized and coordinated. This simulation methodology is an ideal one to represent IoT setups, which are usually very demanding, due to the heterogeneity of possible scenarios arising from the massive deployment of an enormous amount of sensors and devices. We present a use case concerned with the distributed simulation of smart territories, a novel view of decentralized geographical spaces that, thanks to the use of IoT, builds ICT services to manage resources in a way that is sustainable and not harmful to the environment. Three different simulation models are combined together, namely, an adaptive agent-based parallel and distributed simulator, an OMNeT++ based discrete event simulator and a script-language simulator based on MATLAB. Results from a performance analysis confirm the viability of using hybrid simulation to model complex IoT scenarios.Comment: arXiv admin note: substantial text overlap with arXiv:1605.0487

    An Adaptive Security Protocol for a Wireless Sensor‐based Monitoring Network in Smart Grid Transmission Lines

    Get PDF
    In this paper, we propose a new security protocol for a wireless sensor network, which is designed for monitoring long range power transmission lines in smart grid. Part of the monitoring network is composed of optical fiber composite over head ground wire (OPGW), thus it can be secured with conventional security protocol. However, the wireless sensor network between two neighboring OPGW gateways remains vulnerable. Our proposed security protocol focuses on the wireless sensor network part, it provides mutual authentication, data integrity, and data confidentiality for both uplink and downlink transmissions between the sensor nodes and the OPGW gateway. Besides, our proposed protocol is adaptive to the dynamic node changes of the monitoring sensor network; for example, new sensors are added to the network, or some of the sensors are malfunctioning. We further propose a self‐healing process using an “i‐neighboring nodes” public key structure and an asymmetric algorithm. We also conduct energy consumption analysis for both general and extreme conditions to show that our security protocol improves the availability of the monitoring sensor network

    Internet of Things in Sustainable Energy Systems

    Get PDF
    Our planet has abundant renewable and conventional energy resources but technological capability and capacity gaps coupled with water-energy needs limit the benefits of these resources to citizens. Through IoT technology solutions and state-of-the-art IoT sensing and communications approaches, the sustainable energy-related research and innovation can bring a revolution in this area. Moreover, by the leveraging current infrastructure, including renewable energy technologies, microgrids, and power-to-gas (P2G) hydrogen systems, the Internet of Things in sustainable energy systems can address challenges in energy security to the community, with a minimal trade-off to environment and culture. In this chapter, the IoT in sustainable energy systems approaches, methodologies, scenarios, and tools is presented with a detailed discussion of different sensing and communications techniques. This IoT approach in energy systems is envisioned to enhance the bidirectional interchange of network services in grid by using Internet of Things in grid that will result in enhanced system resilience, reliable data flow, and connectivity optimization. Moreover, the sustainable energy IoT research challenges and innovation opportunities are also discussed to address the complex energy needs of our community and promote a strong energy sector economy

    Digital Twinning in Smart Grid Networks: Interplay, Resource Allocation and Use Cases

    Full text link
    Motivated by climate change, increasing industrialization and energy reliability concerns, the smart grid is set to revolutionize traditional power systems. Moreover, the exponential annual rise in number of grid-connected users and emerging key players e.g. electric vehicles strain the limited radio resources, which stresses the need for novel and scalable resource management techniques. Digital twin is a cutting-edge virtualization technology that has shown great potential by offering solutions for inherent bottlenecks in traditional wireless networks. In this article, we set the stage for various roles digital twinning can fulfill by optimizing congested radio resources in a proactive and resilient smart grid. Digital twins can help smart grid networks through real-time monitoring, advanced precise modeling and efficient radio resource allocation for normal operations and service restoration following unexpected events. However, reliable real-time communications, intricate abstraction abilities, interoperability with other smart grid technologies, robust computing capabilities and resilient security schemes are some open challenges for future work on digital twins.Comment: 7 pages, 3 figure

    Energy Efficient Massive MIMO System Design for Smart Grid Communications

    Get PDF
    Communication technologies are critical in achieving potential advantages of smart gird (SG), as they enable electric utilities to interact with their devices and customers. This paper focuses on the integration of a massive multiple-input multiple-output (MIMO) technique into a SG communication architecture. Massive MIMO has the benefits of offering higher data rates, whereas operating a large number of antennas in practice could increase the system complexity and energy consumption. We propose to use antenna selection to preserve the gain provided by the large number of antennas, and investigate an energy efficient massive MIMO system design for SG communications. Specifically, we derive a closed-form asymptotic approximation to the system energy efficiency function in consideration of channel spatial correlation, which exhibits an excellent level of accuracy for a wide range of system dimensions in SG communication scenarios. Based on the accurate approximation, we propose a novel antenna selection scheme aiming at maximizing the system energy efficiency, using only the long-term channel statistics. Simulation results show that the proposed antenna selection scheme can always achieve an energy efficiency gain compared to other selection schemes or baseline systems without antenna selection, and thus is particularly valuable for enabling an energy efficient communication system of the SG

    A cyber-enabled mission-critical system for post-flood response:Exploiting TV white space as network backhaul links

    Get PDF
    A crucial problem in post-flood recovery actions is the ability to rapidly establish communication and collaboration among rescuers to conduct timely and effective search and rescue (SAR) mission given disrupted telecommunication infrastructure to support the service. Aimed at providing such proximity service (ProSe) for mission-critical data exchange in the post-flood environment, the majority of existing solutions rely heavily upon ad-hoc networking approaches, which suffer from restricted communication range and the limited scope of interaction. As an effort to broaden the ProSe coverage and expand integrated global-local information exchange in the post-flood SAR activities, this paper proposes a novel network architecture in the form of a cyber-enabled mission-critical system (CEMCS) for acquiring and communicating post-flood emergency data by exploiting TV white space spectrum as network backhaul links. The primary method of developing the proposed system builds upon a layered architecture of wireless local, regional and wide-area communications, and incorporates collaborative network components among these layers. The desirable functionalities of CEMCS are showcased through formulation and the development of an efficient global search strategy exploiting a wide range of collaboration among network agents. The simulation results demonstrate the capability of CEMCS to provide ProSe in the post-flood scenarios as reflected by reliable network performance (e.g., packet delivery ratio nearing 80%-90%) and the optimality of efficient search algorithm
    • 

    corecore