247 research outputs found

    A Self-Stabilizing Byzantine-Fault-Tolerant Clock Synchronization Protocol

    Get PDF
    This report presents a rapid Byzantine-fault-tolerant self-stabilizing clock synchronization protocol that is independent of application-specific requirements. It is focused on clock synchronization of a system in the presence of Byzantine faults after the cause of any transient faults has dissipated. A model of this protocol is mechanically verified using the Symbolic Model Verifier (SMV) [SMV] where the entire state space is examined and proven to self-stabilize in the presence of one arbitrary faulty node. Instances of the protocol are proven to tolerate bursts of transient failures and deterministically converge with a linear convergence time with respect to the synchronization period. This protocol does not rely on assumptions about the initial state of the system other than the presence of sufficient number of good nodes. All timing measures of variables are based on the node s local clock, and no central clock or externally generated pulse is used. The Byzantine faulty behavior modeled here is a node with arbitrarily malicious behavior that is allowed to influence other nodes at every clock tick. The only constraint is that the interactions are restricted to defined interfaces

    Dynamic FTSS in Asynchronous Systems: the Case of Unison

    Full text link
    Distributed fault-tolerance can mask the effect of a limited number of permanent faults, while self-stabilization provides forward recovery after an arbitrary number of transient fault hit the system. FTSS protocols combine the best of both worlds since they are simultaneously fault-tolerant and self-stabilizing. To date, FTSS solutions either consider static (i.e. fixed point) tasks, or assume synchronous scheduling of the system components. In this paper, we present the first study of dynamic tasks in asynchronous systems, considering the unison problem as a benchmark. Unison can be seen as a local clock synchronization problem as neighbors must maintain digital clocks at most one time unit away from each other, and increment their own clock value infinitely often. We present many impossibility results for this difficult problem and propose a FTSS solution when the problem is solvable that exhibits optimal fault containment

    Minimizing Message Size in Stochastic Communication Patterns: Fast Self-Stabilizing Protocols with 3 bits

    Full text link
    This paper considers the basic PULL\mathcal{PULL} model of communication, in which in each round, each agent extracts information from few randomly chosen agents. We seek to identify the smallest amount of information revealed in each interaction (message size) that nevertheless allows for efficient and robust computations of fundamental information dissemination tasks. We focus on the Majority Bit Dissemination problem that considers a population of nn agents, with a designated subset of source agents. Each source agent holds an input bit and each agent holds an output bit. The goal is to let all agents converge their output bits on the most frequent input bit of the sources (the majority bit). Note that the particular case of a single source agent corresponds to the classical problem of Broadcast. We concentrate on the severe fault-tolerant context of self-stabilization, in which a correct configuration must be reached eventually, despite all agents starting the execution with arbitrary initial states. We first design a general compiler which can essentially transform any self-stabilizing algorithm with a certain property that uses \ell-bits messages to one that uses only log\log \ell-bits messages, while paying only a small penalty in the running time. By applying this compiler recursively we then obtain a self-stabilizing Clock Synchronization protocol, in which agents synchronize their clocks modulo some given integer TT, within O~(lognlogT)\tilde O(\log n\log T) rounds w.h.p., and using messages that contain 33 bits only. We then employ the new Clock Synchronization tool to obtain a self-stabilizing Majority Bit Dissemination protocol which converges in O~(logn)\tilde O(\log n) time, w.h.p., on every initial configuration, provided that the ratio of sources supporting the minority opinion is bounded away from half. Moreover, this protocol also uses only 3 bits per interaction.Comment: 28 pages, 4 figure

    Randomization Adaptive Self-Stabilization

    Full text link
    We present a scheme to convert self-stabilizing algorithms that use randomization during and following convergence to self-stabilizing algorithms that use randomization only during convergence. We thus reduce the number of random bits from an infinite number to a bounded number. The scheme is applicable to the cases in which there exits a local predicate for each node, such that global consistency is implied by the union of the local predicates. We demonstrate our scheme over the token circulation algorithm of Herman and the recent constant time Byzantine self-stabilizing clock synchronization algorithm by Ben-Or, Dolev and Hoch. The application of our scheme results in the first constant time Byzantine self-stabilizing clock synchronization algorithm that uses a bounded number of random bits

    Bounding the Impact of Unbounded Attacks in Stabilization

    Get PDF
    Self-stabilization is a versatile approach to fault-tolerance since it permits a distributed system to recover from any transient fault that arbitrarily corrupts the contents of all memories in the system. Byzantine tolerance is an attractive feature of distributed systems that permits to cope with arbitrary malicious behaviors. Combining these two properties proved difficult: it is impossible to contain the spatial impact of Byzantine nodes in a self-stabilizing context for global tasks such as tree orientation and tree construction. We present and illustrate a new concept of Byzantine containment in stabilization. Our property, called Strong Stabilization enables to contain the impact of Byzantine nodes if they actually perform too many Byzantine actions. We derive impossibility results for strong stabilization and present strongly stabilizing protocols for tree orientation and tree construction that are optimal with respect to the number of Byzantine nodes that can be tolerated in a self-stabilizing context

    Fast self-stabilizing byzantine tolerant digital clock synchronization

    Get PDF
    Consider a distributed network in which up to a third of the nodes may be Byzantine, and in which the non-faulty nodes may be subject to transient faults that alter their memory in an arbitrary fashion. Within the context of this model, we are interested in the digital clock synchronization problem; which consists of agreeing on bounded integer counters, and increasing these counters regularly. It has been postulated in the past that synchronization cannot be solved in a Byzantine tolerant and self-stabilizing manner. The first solution to this problem had an expected exponential convergence time. Later, a deterministic solution was published with linear convergence time, which is optimal for deterministic solutions. In the current paper we achieve an expected constant convergence time. We thus obtain the optimal probabilistic solution, both in terms of convergence time and in terms of resilience to Byzantine adversaries

    A Byzantine-Fault Tolerant Self-Stabilizing Protocol for Distributed Clock Synchronization Systems

    Get PDF
    Embedded distributed systems have become an integral part of safety-critical computing applications, necessitating system designs that incorporate fault tolerant clock synchronization in order to achieve ultra-reliable assurance levels. Many efficient clock synchronization protocols do not, however, address Byzantine failures, and most protocols that do tolerate Byzantine failures do not self-stabilize. Of the Byzantine self-stabilizing clock synchronization algorithms that exist in the literature, they are based on either unjustifiably strong assumptions about initial synchrony of the nodes or on the existence of a common pulse at the nodes. The Byzantine self-stabilizing clock synchronization protocol presented here does not rely on any assumptions about the initial state of the clocks. Furthermore, there is neither a central clock nor an externally generated pulse system. The proposed protocol converges deterministically, is scalable, and self-stabilizes in a short amount of time. The convergence time is linear with respect to the self-stabilization period. Proofs of the correctness of the protocol as well as the results of formal verification efforts are reported
    corecore