131,429 research outputs found

    Ultra Reliable Computing Systems

    Get PDF
    For high security and safety applications as well as general purpose applications, it is necessary to have ultra reliable computing systems. This dissertation describes our system of self-testable and self-repairable digital devices, especially, EPLDs (Electrically Programmable Logic Devices). In addition to significantly improving the reliability of digital systems, our self-healing and re-configurable system design with added repair capability can also provide higher yields, lower testing costs, and faster time-to-market for the semiconductor industry. The digital system in our approach is composed of blocks, which realize combinational and sequential circuits using GALs (Generic Array Logic Devices). We describe three techniques for fault-locating and fault-repairing in these devices. The methodology we used for evaluation of these methods and a comparison with devices that have no self-repair capability was simulation of the self-repair algorithms. Our simulations show that the lifetime for a GAL-based EPLD that uses our multiple self-repairing methods is longer than the lifetime of a GAL-based EPLD that uses a single self-repair method or no self-repair method. Specifically, our work demonstrates that the lifetime of a GAL can be increased by adding extra columns in the AND array of a GAL and extra output ORs in a GAL. It also gives information on how many extra columns and extra ORs a GAL needs and which self-repairing method should be used to guarantee a given lifetime. Thus, we can estimate an ideal point, where the maximum reliability can be reached with the minimum cost

    Toward Biologically-Inspired Self-Healing, Resilient Architectures for Digital Instrumentation and Control Systems and Embedded Devices

    Get PDF
    Digital Instrumentation and Control (I&C) systems in safety-related applications of next generation industrial automation systems require high levels of resilience against different fault classes. One of the more essential concepts for achieving this goal is the notion of resilient and survivable digital I&C systems. In recent years, self-healing concepts based on biological physiology have received attention for the design of robust digital systems. However, many of these approaches have not been architected from the outset with safety in mind, nor have they been targeted for the automation community where a significant need exists. This dissertation presents a new self-healing digital I&C architecture called BioSymPLe, inspired from the way nature responds, defends and heals: the stem cells in the immune system of living organisms, the life cycle of the living cell, and the pathway from Deoxyribonucleic acid (DNA) to protein. The BioSymPLe architecture is integrating biological concepts, fault tolerance techniques, and operational schematics for the international standard IEC 61131-3 to facilitate adoption in the automation industry. BioSymPLe is organized into three hierarchical levels: the local function migration layer from the top side, the critical service layer in the middle, and the global function migration layer from the bottom side. The local layer is used to monitor the correct execution of functions at the cellular level and to activate healing mechanisms at the critical service level. The critical layer is allocating a group of functional B cells which represent the building block that executes the intended functionality of critical application based on the expression for DNA genetic codes stored inside each cell. The global layer uses a concept of embryonic stem cells by differentiating these type of cells to repair the faulty T cells and supervising all repair mechanisms. Finally, two industrial applications have been mapped on the proposed architecture, which are capable of tolerating a significant number of faults (transient, permanent, and hardware common cause failures CCFs) that can stem from environmental disturbances and we believe the nexus of its concepts can positively impact the next generation of critical systems in the automation industry

    Formal and Fault Tolerant Design

    Get PDF
    Software quality and reliability were verified for a long time at the post-implementation level (test, fault sce-nario ...). The design of embedded systems and digital circuits is more and more complex because of inte-gration density, heterogeneity. Now almost ¾ of the digital circuits contain at least one processor, that is, can execute software code. In other words, co-design is the most usual case and traditional verification by simu-lation is no more practical. Moreover, the increase in integration density comes with a decrease in the reliabil-ity of the components. So fault detection, diagnostics techniques, introspection are essential for defect toler-ance, fault tolerance and self repair of safety-critical systems. The use of a formal specification language is considered as the foundation of a real validation. What we would like to emphasize is that refinement (from an abstract model to the point where the system will be implemented) could be and should be formal too in order to ensure the traceability of requirements, to man-age such development projects and so to design fault-tolerant systems correct by proven construction. Such a thorough approach can be achieved by the automation or semi-automation of the refinement process. We have studied how to ensure the traceability of these requirements in a component-based approach. Re-liability, fault tolerance can be seen here as particular refinement steps. For instance, a given formal specifi-cation of a system/component may be refined by adding redundancy (data, computation, component) and be verified to be fault-tolerant w.r.t. some given fault scenarios. A self-repair component can be defined as the refinement of its original form enhanced with error detection. We describe in this paper the PCSI project (Zero Defect Systems) based on B Method, VHDL and PSL. The three modeling approaches can collaborate together and guarantee the codesign of embedded systems for which the requirements and the fault-tolerant aspects are taken into account for the beginning and formally verified all along the implementation process

    Online self-repair of FIR filters

    Get PDF
    Chip-level failure detection has been a target of research for some time, but today's very deep-submicron technology is forcing such research to move beyond detection. Repair, especially self-repair, has become very important for containing the susceptibility of today's chips. This article introduces a self-repair-solution for the digital FIR filter, one of the key blocks used in DSPs

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    An On-line BIST RAM Architecture with Self Repair Capabilities

    Get PDF
    The emerging field of self-repair computing is expected to have a major impact on deployable systems for space missions and defense applications, where high reliability, availability, and serviceability are needed. In this context, RAM (random access memories) are among the most critical components. This paper proposes a built-in self-repair (BISR) approach for RAM cores. The proposed design, introducing minimal and technology-dependent overheads, can detect and repair a wide range of memory faults including: stuck-at, coupling, and address faults. The test and repair capabilities are used on-line, and are completely transparent to the external user, who can use the memory without any change in the memory-access protocol. Using a fault-injection environment that can emulate the occurrence of faults inside the module, the effectiveness of the proposed architecture in terms of both fault detection and repairing capability was verified. Memories of various sizes have been considered to evaluate the area-overhead introduced by this proposed architectur

    Conclusions and implications of automation in space

    Get PDF
    Space facilities and programs are reviewed. Space program planning is discussed

    A Self-Repairing Execution Unit for Microprogrammed Processors

    Get PDF
    Describes a processor which dynamically reconfigures its internal microcode to execute each instruction using only fault-free blocks from the execution unit. Working without redundant or spare computational blocks, this self-repair approach permits a graceful performance degradatio

    Dependable Digitally-Assisted Mixed-Signal IPs Based on Integrated Self-Test & Self-Calibration

    Get PDF
    Heterogeneous SoC devices, including sensors, analogue and mixed-signal front-end circuits and the availability of massive digital processing capability, are being increasingly used in safety-critical applications like in the automotive, medical, and the security arena. Already a significant amount of attention has been paid in literature with respect to the dependability of the digital parts in heterogeneous SoCs. This is in contrast to especially the sensors and front-end mixed-signal electronics; these are however particular sensitive to external influences over time and hence determining their dependability. This paper provides an integrated SoC/IP approach to enhance the dependability. It will give an example of a digitally-assisted mixed-signal front-end IP which is being evaluated under its mission profile of an automotive tyre pressure monitoring system. It will be shown how internal monitoring and digitally-controlled adaptation by using embedded processors can help in terms of improving the dependability of this mixed-signal part under harsh conditions for a long time
    corecore