273 research outputs found

    Addressing Tasks Through Robot Adaptation

    Get PDF
    Developing flexible, broadly capable systems is essential for robots to move out of factories and into our daily lives, functioning as responsive agents that can handle whatever the world throws at them. This dissertation focuses on two kinds of robot adaptation. Modular self-reconfigurable robots (MSRR) adapt to the requirements of their task and environments by transforming themselves. By rearranging the connective structure of their component robot modules, these systems can assume different morphologies: for example, a cluster of modules might configure themselves into a car to maneuver on flat ground, a snake to climb stairs, or an arm to pick and place objects. Conversely, environment augmentation is a strategy in which the robot transforms its environment to meet its own needs, adding physical structures that allow it to overcome obstacles. In both areas, the presented work includes elements of hardware design, algorithms, and integrated systems, with the common goal of establishing these methods of adaptation as viable strategies to address tasks. The research takes a systems-level view of robotics, placing particular emphasis on experimental validation in hardware

    An Analysis of the Million Module March algorithm applied to the ATRON robotic platform

    Get PDF
    The Million Module March algorithm is a locomotion planning algorithm for self-reconfiguring robotic systems. It was first introduced by Robert Fitch and Zack Butler. It has already been proven to successfully plan movement for a kinematic abstraction whose traits are very different from the kinematic traits of the ATRON system. In this work we further examine this algorithm, and an adaptation of it to the ATRON robotic system. We examine a two dimensional proof of the reachability of connected configurations of sliding squares, and expand the proof to the three dimensional SlidingCube model of a self-reconfiguring robot. Using this proof, we explore in greater detail the theoretical basis of the Million Module March algorithm. We then modify the simulator used in the original Million Module March works to simulate the ATRON platform, and run a series of experiments. Ultimately, it is determined that the algorithm does not consistently perform as desired on the ATRON platform. We demonstrate that this performance is due to the inability of ATRON\u27s kinematics to guarantee reachability of connected configurations, and that therefore no similar algorithm of sublinear complexity can be guaranteed to perform as desired

    The Propulsion of Reconfigurable Modular Robots in Fluidic Environments

    Get PDF
    Reconfigurable modular robots promise to transform the way robotic systems are designed and operated. Fluidic or microgravity environments, which can be difficult or dangerous for humans to work in, are ideal domains for the use of modular systems. This thesis proposes that combining effective propulsion, large reconfiguration space and high scalability will increase the utility of modular robots. A novel concept for the propulsion of reconfigurable modular robots is developed. Termed Modular Fluidic Propulsion (MFP), this concept describes a system that propels by routing fluid though itself. This allows MFP robots to self-propel quickly and effectively in any configuration, while featuring a cubic lattice structure. A decentralized occlusion-based motion controller for the system is developed. The simplicity of the controller, which requires neither run-time memory nor computation via logic units, combined with the simple binary sensors and actuators of the robot, gives the system a high level of scalabilty. It is proven formally that 2-D MFP robots are able to complete a directed locomotion task under certain assumptions. Simulations in 3-D show that robots composed of 125 modules in a variety of configurations can complete the task. A hardware prototype that floats on the surface of water is developed. Experiments show that robots composed of four modules can complete the task in any configuration. This thesis also investigates the evo-bots, a self-reconfigurable modular system that floats in 2-D on an air table. The evo-bot system uses a stop-start propulsion mechanism to choose between moving randomly or not moving at all. This is demonstrated experimentally for the first time. In addition, the ability of the modules to detect, harvest and share energy, as well as self-assemble into simple structures, is demonstrated
    corecore