1,112 research outputs found

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    New algorithms for the analysis of live-cell images acquired in phase contrast microscopy

    Get PDF
    La dĂ©tection et la caractĂ©risation automatisĂ©e des cellules constituent un enjeu important dans de nombreux domaines de recherche tels que la cicatrisation, le dĂ©veloppement de l'embryon et des cellules souches, l’immunologie, l’oncologie, l'ingĂ©nierie tissulaire et la dĂ©couverte de nouveaux mĂ©dicaments. Étudier le comportement cellulaire in vitro par imagerie des cellules vivantes et par le criblage Ă  haut dĂ©bit implique des milliers d'images et de vastes quantitĂ©s de donnĂ©es. Des outils d'analyse automatisĂ©s reposant sur la vision numĂ©rique et les mĂ©thodes non-intrusives telles que la microscopie Ă  contraste de phase (PCM) sont nĂ©cessaires. Comme les images PCM sont difficiles Ă  analyser en raison du halo lumineux entourant les cellules et de la difficultĂ© Ă  distinguer les cellules individuelles, le but de ce projet Ă©tait de dĂ©velopper des algorithmes de traitement d'image PCM dans MatlabÂź afin d’en tirer de l’information reliĂ©e Ă  la morphologie cellulaire de maniĂšre automatisĂ©e. Pour dĂ©velopper ces algorithmes, des sĂ©ries d’images de myoblastes acquises en PCM ont Ă©tĂ© gĂ©nĂ©rĂ©es, en faisant croĂźtre les cellules dans un milieu avec sĂ©rum bovin (SSM) ou dans un milieu sans sĂ©rum (SFM) sur plusieurs passages. La surface recouverte par les cellules a Ă©tĂ© estimĂ©e en utilisant un filtre de plage de valeurs, un seuil et une taille minimale de coupe afin d'examiner la cinĂ©tique de croissance cellulaire. Les rĂ©sultats ont montrĂ© que les cellules avaient des taux de croissance similaires pour les deux milieux de culture, mais que celui-ci diminue de façon linĂ©aire avec le nombre de passages. La mĂ©thode de transformĂ©e par ondelette continue combinĂ©e Ă  l’analyse d'image multivariĂ©e (UWT-MIA) a Ă©tĂ© Ă©laborĂ©e afin d’estimer la distribution de caractĂ©ristiques morphologiques des cellules (axe majeur, axe mineur, orientation et rondeur). Une analyse multivariĂ©e rĂ©alisĂ©e sur l’ensemble de la base de donnĂ©es (environ 1 million d’images PCM) a montrĂ© d'une maniĂšre quantitative que les myoblastes cultivĂ©s dans le milieu SFM Ă©taient plus allongĂ©s et plus petits que ceux cultivĂ©s dans le milieu SSM. Les algorithmes dĂ©veloppĂ©s grĂące Ă  ce projet pourraient ĂȘtre utilisĂ©s sur d'autres phĂ©notypes cellulaires pour des applications de criblage Ă  haut dĂ©bit et de contrĂŽle de cultures cellulaires.Automated cell detection and characterization is important in many research fields such as wound healing, embryo development, immune system studies, cancer research, parasite spreading, tissue engineering, stem cell research and drug research and testing. Studying in vitro cellular behavior via live-cell imaging and high-throughput screening involves thousands of images and vast amounts of data, and automated analysis tools relying on machine vision methods and non-intrusive methods such as phase contrast microscopy (PCM) are a necessity. However, there are still some challenges to overcome, since PCM images are difficult to analyze because of the bright halo surrounding the cells and blurry cell-cell boundaries when they are touching. The goal of this project was to develop image processing algorithms to analyze PCM images in an automated fashion, capable of processing large datasets of images to extract information related to cellular viability and morphology. To develop these algorithms, a large dataset of myoblasts images acquired in live-cell imaging (in PCM) was created, growing the cells in either a serum-supplemented (SSM) or a serum-free (SFM) medium over several passages. As a result, algorithms capable of computing the cell-covered surface and cellular morphological features were programmed in MatlabÂź. The cell-covered surface was estimated using a range filter, a threshold and a minimum cut size in order to look at the cellular growth kinetics. Results showed that the cells were growing at similar paces for both media, but their growth rate was decreasing linearly with passage number. The undecimated wavelet transform multivariate image analysis (UWT-MIA) method was developed, and was used to estimate cellular morphological features distributions (major axis, minor axis, orientation and roundness distributions) on a very large PCM image dataset using the Gabor continuous wavelet transform. Multivariate data analysis performed on the whole database (around 1 million PCM images) showed in a quantitative manner that myoblasts grown in SFM were more elongated and smaller than cells grown in SSM. The algorithms developed through this project could be used in the future on other cellular phenotypes for high-throughput screening and cell culture control applications

    Bioengineered embryoids mimic post-implantation development in vitro.

    Get PDF
    The difficulty of studying post-implantation development in mammals has sparked a flurry of activity to develop in vitro models, termed embryoids, based on self-organizing pluripotent stem cells. Previous approaches to derive embryoids either lack the physiological morphology and signaling interactions, or are unconducive to model post-gastrulation development. Here, we report a bioengineering-inspired approach aimed at addressing this gap. We employ a high-throughput cell aggregation approach to simultaneously coax mouse embryonic stem cells into hundreds of uniform epiblast-like aggregates in a solid matrix-free manner. When co-cultured with mouse trophoblast stem cell aggregates, the resulting hybrid structures initiate gastrulation-like events and undergo axial morphogenesis to yield structures, termed EpiTS embryoids, with a pronounced anterior development, including brain-like regions. We identify the presence of an epithelium in EPI aggregates as the major determinant for the axial morphogenesis and anterior development seen in EpiTS embryoids. Our results demonstrate the potential of EpiTS embryoids to study peri-gastrulation development in vitro

    WHIDE—a web tool for visual data mining colocation patterns in multivariate bioimages

    Get PDF
    Motivation: Bioimaging techniques rapidly develop toward higher resolution and dimension. The increase in dimension is achieved by different techniques such as multitag fluorescence imaging, Matrix Assisted Laser Desorption / Ionization (MALDI) imaging or Raman imaging, which record for each pixel an N-dimensional intensity array, representing local abundances of molecules, residues or interaction patterns. The analysis of such multivariate bioimages (MBIs) calls for new approaches to support users in the analysis of both feature domains: space (i.e. sample morphology) and molecular colocation or interaction. In this article, we present our approach WHIDE (Web-based Hyperbolic Image Data Explorer) that combines principles from computational learning, dimension reduction and visualization in a free web application

    Interactive Learning for the Analysis of Biomedical and Industrial Imagery

    Get PDF
    In der vorliegenden Dissertation werden Methoden des ĂŒberwachten Lernens untersucht und auf die Analyse und die Segmentierung digitaler Bilddaten angewendet, die aus diversen Forschungsgebieten stammen. Die Segmentierung und die Klassifikation spielen eine wichtige Rolle in der biomedizinischen und industriellen Bildverarbeitung, hĂ€ufig basiert darauf weitere Erkennung und Quantifikation. Viele problemspezifische AnsĂ€tze existieren fĂŒr die unterschiedlichsten Fragestellungen und nutzen meist spezifisches Vorwissen aus den jeweiligen Bilddaten aus. In dieser Arbeit wird ein ĂŒberwachtes Lernverfahren vorgestellt, das mehrere Objekte und deren Klassen gleichzeitig segmentieren und unterscheiden kann. Die Methode ist generell genug um einen wichtigen Bereich von Anwendungen abzudecken, fĂŒr deren Lösung lokale Merkmale eine Rolle spielen. Segmentierungsergebnisse dieses Ansatzes werden auf verschiedenen DatensĂ€tzen mit unterschiedlichen Problemstellungen gezeigt. Die Resultate unterstreichen die Anwendbarkeit der Lernmethode fĂŒr viele biomedizinische und industrielle Anwendungen, ohne dass explizite Kenntnisse der Bildverarbeitung und Programmierung vorausgesetzt werden mĂŒssen. Der Ansatz basiert auf generellen Merkmalsklassen, die es erlauben lokal Strukturen wie Farbe, Textur und Kanten zu beschreiben. Zu diesem Zweck wurde eine interaktive Software implementiert, welche, fĂŒr gewöhnliche BildgrĂ¶ĂŸen, in Echtzeit arbeitet und es somit einem DomĂ€nenexperten erlaubt Segmentierungs- und Klassifikationsaufgaben interaktiv zu bearbeiten. DafĂŒr sind keine Kenntnisse in der Bildverarbeitung nötig, da sich die Benutzerinteraktion auf intuitives Markieren mit einem Pinselwerkzeug beschrĂ€nkt. Das interaktiv trainierte System kann dann ohne weitere Benutzerinteraktion auf viele neue Bilder angewendet werden. Der Ansatz ist auf Segmentierungsprobleme beschrĂ€nkt, fĂŒr deren Lösung lokale diskriminative Merkmale ausreichen. Innerhalb dieser EinschrĂ€nkung zeigt der Algorithmus jedoch erstaunlich gute Resultate, die in einer applikationsspezifischen Prozedur weiter verbessert werden können. Das Verfahren unterstĂŒtzt bis zu vierdimensionale, multispektrale Bilddaten in vereinheitlichter Weise. Um die Anwendbar- und Übertragbarkeit der Methode weiter zu illustrieren wurden mehrere echte AnwendungsfĂ€lle, kommend aus verschiedenen bildgebenden Bereichen, untersucht. Darunter sind u. A. die Segmentierung von Tumorgewebe, aufgenommen mittelsWeitfeldmikroskopie, die Quantifikation von Zellwanderungen in konfokalmikroskopischen Aufnahmen fĂŒr die Untersuchung der adulten Neurogenese, die Segmentierung von BlutgefĂ€ĂŸen in der Retina des Auges, das Verfolgen von KupferdrĂ€hten in einer Anwendung zur Produktauthentifikation und die QualitĂ€tskontrolle von Mikroskopiebildern im Kontext von Hochdurchsatz-Experimenten. Desweiteren wurde eine neue Klassifikationsmethode basierend auf globalen FrequenzschĂ€tzungen fĂŒr die Prozesskontrolle des Papieranlegers an Druckmaschinen entwickelt
    • 

    corecore