124 research outputs found

    Enabling Large-Scale Peer-to-Peer Stored Video Streaming Service with QoS Support

    Get PDF
    This research aims to enable a large-scale, high-volume, peer-to-peer, stored-video streaming service over the Internet, such as on-line DVD rentals. P2P allows a group of dynamically organized users to cooperatively support content discovery and distribution services without needing to employ a central server. P2P has the potential to overcome the scalability issue associated with client-server based video distribution networks; however, it brings a new set of challenges. This research addresses the following five technical challenges associated with the distribution of streaming video over the P2P network: 1) allow users with limited transmit bandwidth capacity to become contributing sources, 2) support the advertisement and discovery of time-changing and time-bounded video frame availability, 3) Minimize the impact of distribution source losses during video playback, 4) incorporate user mobility information in the selection of distribution sources, and 5) design a streaming network architecture that enables above functionalities.To meet the above requirements, we propose a video distribution network model based on a hybrid architecture between client-server and P2P. In this model, a video is divided into a sequence of small segments and each user executes a scheduling algorithm to determine the order, the timing, and the rate of segment retrievals from other users. The model also employs an advertisement and discovery scheme which incorporates parameters of the scheduling algorithm to allow users to share their life-time of video segment availability information in one advertisement and one query. An accompanying QoS scheme allows reduction in the number of video playback interruptions while one or more distribution sources depart from the service prematurely.The simulation study shows that the proposed model and associated schemes greatly alleviate the bandwidth requirement of the video distribution server, especially when the number of participating users grows large. As much as 90% of load reduction was observed in some experiments when compared to a traditional client-server based video distribution service. A significant reduction is also observed in the number of video presentation interruptions when the proposed QoS scheme is incorporated in the distribution process while certain percentages of distribution sources depart from the service unexpectedly

    Static Web content distribution and request routing in a P2P overlay

    Get PDF
    The significance of collaboration over the Internet has become a corner-stone of modern computing, as the essence of information processing and content management has shifted to networked and Webbased systems. As a result, the effective and reliable access to networked resources has become a critical commodity in any modern infrastructure. In order to cope with the limitations introduced by the traditional client-server networking model, most of the popular Web-based services have employed separate Content Delivery Networks (CDN) to distribute the server-side resource consumption. Since the Web applications are often latency-critical, the CDNs are additionally being adopted for optimizing the content delivery latencies perceived by the Web clients. Because of the prevalent connection model, the Web content delivery has grown to a notable industry. The rapid growth in the amount of mobile devices further contributes to the amount of resources required from the originating server, as the content is also accessible on the go. While the Web has become one of the most utilized sources of information and digital content, the openness of the Internet is simultaneously being reduced by organizations and governments preventing access to any undesired resources. The access to information may be regulated or altered to suit any political interests or organizational benefits, thus conflicting with the initial design principle of an unrestricted and independent information network. This thesis contributes to the development of more efficient and open Internet by combining a feasibility study and a preliminary design of a peer-to-peer based Web content distribution and request routing mechanism. The suggested design addresses both the challenges related to effectiveness of current client-server networking model and the openness of information distributed over the Internet. Based on the properties of existing peer-to-peer implementations, the suggested overlay design is intended to provide low-latency access to any Web content without sacrificing the end-user privacy. The overlay is additionally designed to increase the cost of censorship by forcing a successful blockade to isolate the censored network from the rest of the Internet

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Content Distribution in P2P Systems

    Get PDF
    The report provides a literature review of the state-of-the-art for content distribution. The report's contributions are of threefold. First, it gives more insight into traditional Content Distribution Networks (CDN), their requirements and open issues. Second, it discusses Peer-to-Peer (P2P) systems as a cheap and scalable alternative for CDN and extracts their design challenges. Finally, it evaluates the existing P2P systems dedicated for content distribution according to the identied requirements and challenges

    Application of overlay techniques to network monitoring

    Get PDF
    Measurement and monitoring are important for correct and efficient operation of a network, since these activities provide reliable information and accurate analysis for characterizing and troubleshooting a network’s performance. The focus of network measurement is to measure the volume and types of traffic on a particular network and to record the raw measurement results. The focus of network monitoring is to initiate measurement tasks, collect raw measurement results, and report aggregated outcomes. Network systems are continuously evolving: besides incremental change to accommodate new devices, more drastic changes occur to accommodate new applications, such as overlay-based content delivery networks. As a consequence, a network can experience significant increases in size and significant levels of long-range, coordinated, distributed activity; furthermore, heterogeneous network technologies, services and applications coexist and interact. Reliance upon traditional, point-to-point, ad hoc measurements to manage such networks is becoming increasingly tenuous. In particular, correlated, simultaneous 1-way measurements are needed, as is the ability to access measurement information stored throughout the network of interest. To address these new challenges, this dissertation proposes OverMon, a new paradigm for edge-to-edge network monitoring systems through the application of overlay techniques. Of particular interest, the problem of significant network overheads caused by normal overlay network techniques has been addressed by constructing overlay networks with topology awareness - the network topology information is derived from interior gateway protocol (IGP) traffic, i.e. OSPF traffic, thus eliminating all overlay maintenance network overhead. Through a prototype that uses overlays to initiate measurement tasks and to retrieve measurement results, systematic evaluation has been conducted to demonstrate the feasibility and functionality of OverMon. The measurement results show that OverMon achieves good performance in scalability, flexibility and extensibility, which are important in addressing the new challenges arising from network system evolution. This work, therefore, contributes an innovative approach of applying overly techniques to solve realistic network monitoring problems, and provides valuable first hand experience in building and evaluating such a distributed system

    A lightweight distributed super peer election algorithm for unstructured dynamic P2P systems

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresNowadays with the current growth of information exchange, and the increasing mobility of devices, it becomes essential to use technology to monitor this development. For that P2P networks are used, the exchange of information between agencies is facilitated, these now being applied in mobile networks, including MANETs, where they have special features such as the fact that they are semi-centralized, where it takes peers more ability to make a greater role in the network. But those peer with more capacity, which are used in the optimization of various parameters of these systems, such as optimization\to research, are difficult to identify due to the fact that the network does not have a fixed topology, be constantly changing, (we like to go online and offline, to change position, etc.) and not to allow the exchange of large messages. To this end, this thesis proposes a distributed election algorithm of us greater capacity among several possible goals, enhance research in the network. This includes distinguishing characteristics, such as election without global knowledge network, minimal exchange of messages, distributed decision made without dependence on us and the possibility of influencing the election outcome as the special needs of the network

    Flexible Application-Layer Multicast in Heterogeneous Networks

    Get PDF
    This work develops a set of peer-to-peer-based protocols and extensions in order to provide Internet-wide group communication. The focus is put to the question how different access technologies can be integrated in order to face the growing traffic load problem. Thereby, protocols are developed that allow autonomous adaptation to the current network situation on the one hand and the integration of WiFi domains where applicable on the other hand

    Media handling for conferencing in MANETs

    Get PDF
    Mobile Ad hoc NETworks (MANETs) are formed by devices set up temporarily to communicate without using a pre-existing network infrastructure. Devices in these networks are disparate in terms of resource capabilities (e.g. processing power, battery energy). Multihop Cellular Networks (MCNs) incorporate multihop mobile ad-hoc paradigms into 3G conventional single-hop cellular networks. Conferencing, an essential category of applications in MANETs and MCNs, includes popular applications such as audio/video conferencing. It is defined as an interactive multimedia service comprising online exchange of multimedia content among several users. Conferencing requires two sessions: a call signaling session and a media handling session. Call signaling is used to set up, modify, and tear down conference sessions. Media handling deals with aspects such as media transportation, media mixing, and transcoding. In this thesis, we are concerned with media handling for conferencing in MANETs and MCNs. We propose an architecture based on two overlay networks: one for mixing and one for control. The first overlay is composed of nodes acting as mixers. Each node in the network has a media connection with one mixer in the first overlay. A novel distributed mixing architecture that minimizes the number of mixers in end-to-end paths is proposed as an architectural solution for this first overlay. A sub-network of nodes, called controllers, composes the second overlay. Each controller controls a set of mixers, and collectively, they manage and control the two-overlay network. The management and control tasks are assured by a media signaling architecture based on an extended version of Megaco/H.L248. The two-overlay network is self-organizing, and thus automatically assigns users to mixers, controls mixers and controllers, and recovers the network from failures. We propose a novel self-organizing scheme that has three components: self-growing, self-shrinking and self-healing. Self-growing and self-shrinking use novel workload balancing schemes that make decisions to enable and disable mixers and controllers. The workload balancing schemes use resources efficiently by balancing the load among the nodes according to their capabilities. Self-healing detects failed nodes and recovers the network when failures of nodes with responsibilities (mixers and controllers) occur. Detection of failed nodes is based on a novel application-level failure detection architecture. A novel architecture for media handling in MCNs is proposed. We use mediator concepts to connect the media handling entities of a MANET with the media entities of a 3G cellular network. A media mediator assures signaling and media connectivity between the two networks and acts as a translator of the different media handling protocols

    Underlay aware approach to provide reliable and timely dissemination of events in a publish subscribe system

    Get PDF
    Publish-subscribe is a well-known paradigm for building distributed applications. Events produced by peers, called publishers, are disseminated to interested consumers, called subscribers. Usually publishers and subscribers are arranged in a peer-to-peer overlay network, which helps in dissemination of events in a decentralised manner. Recent research tries to provide Quality-of-Service like delay bounds or reliability in such a system. In order to provide reliability current distributed publish-subscribe systems mostly either rely on overlay level acknowledgement protocols or try to find multiple disjoint paths in the overlay to increase redundancy without taking into account the underlay topology. Acknowledgements induce high delays affecting timeliness of event delivery. Providing multiple paths without looking at the underlay does not take into account correlations between paths within the underlay. We address these drawbacks by designing a content-based publish-subscribe system which provides reliability by taking into account the underlay topology to reduce correlations within the underlay in overlay links. The system consists of three layers: The Topology-Discovery-Overlay (TDO) layer constructs an underlay topology aware overlay which reflects the underlay topology by using a path-matching algorithm. On top of the TDO the Maximum-Reliability-Spanning-Tree (MRST) layer constructs k overlay link disjoint trees which contain the most reliable overlay links. The MRSTs are used by the content-based publish-subscribe layer for subscription flooding and event forwarding. The system has been evaluated by simulations in PeerSim using Internet-like topologies. The results show that the TDO discovers most of the underlay topology and constructs overlay topologies reflecting the underlay topology. Simulations also show that the system converges towards a maximum event delivery probability
    • …
    corecore