713 research outputs found

    Self-optimizing load balancing with backhaul-constrained radio access networks

    Get PDF
    Self-Organizing Network (SON) technology aims at autonomously deploying, optimizing and repairing the Radio Access Networks (RAN). SON algorithms typically use Key Performance Indicators (KPIs) from the RAN. It is shown that in certain cases, it is essential to take into account the impact of the backhaul state in the design of the SON algorithm. We revisit the Base Station (BS) load definition taking into account the backhaul state. We provide an analytical formula for the load along with a simple estimator for both elastic and guaranteed bit-rate (GBR) traffic. We incorporate the proposed load estimator in a self-optimized load balancing algorithm. Simulation results for a backhaul constrained heterogeneous network illustrate how the correct load definition can guarantee a proper operation of the SON algorithm.Comment: Wireless Communications Letters, IEEE, 201

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Control-data separation architecture for cellular radio access networks: a survey and outlook

    Get PDF
    Conventional cellular systems are designed to ensure ubiquitous coverage with an always present wireless channel irrespective of the spatial and temporal demand of service. This approach raises several problems due to the tight coupling between network and data access points, as well as the paradigm shift towards data-oriented services, heterogeneous deployments and network densification. A logical separation between control and data planes is seen as a promising solution that could overcome these issues, by providing data services under the umbrella of a coverage layer. This article presents a holistic survey of existing literature on the control-data separation architecture (CDSA) for cellular radio access networks. As a starting point, we discuss the fundamentals, concepts, and general structure of the CDSA. Then, we point out limitations of the conventional architecture in futuristic deployment scenarios. In addition, we present and critically discuss the work that has been done to investigate potential benefits of the CDSA, as well as its technical challenges and enabling technologies. Finally, an overview of standardisation proposals related to this research vision is provided

    User Association in 5G Networks: A Survey and an Outlook

    Get PDF
    26 pages; accepted to appear in IEEE Communications Surveys and Tutorial

    Integrated Access and Backhaul for 5G and Beyond (6G)

    Get PDF
    Enabling network densification to support coverage-limited millimeter wave (mmWave) frequencies is one of the main requirements for 5G and beyond. It is challenging to connect a high number of base stations (BSs) to the core network via a transport network. Although fiber provides high-rate reliable backhaul links, it requires a noteworthy investment for trenching and installation, and could also take a considerable deployment time. Wireless backhaul, on the other hand, enables fast installation and flexibility, at the cost of data rate and sensitivity to environmental effects. For these reasons, fiber and wireless backhaul have been the dominant backhaul technologies for decades. Integrated access and backhaul (IAB), where along with celluar access services a part of the spectrum available is used to backhaul, is a promising wireless solution for backhauling in 5G and beyond. To this end, in this thesis we evaluate, analyze and optimize IAB networks from various perspectives. Specifically, we analyze IAB networks and develop effective algorithms to improve service coverage probability. In contrast to fiber-connected setups, an IAB network may be affected by, e.g., blockage, tree foliage, and rain loss. Thus, a variety of aspects such as the effects of tree foliage, rain loss, and blocking are evaluated and the network performance when part of the network being non-IAB backhauled is analysed. Furthermore, we evaluate the effect of deployment optimization on the performance of IAB networks.First, in Paper A, we introduce and analyze IAB as an enabler for network densification. Then, we study the IAB network from different aspects of mmWave-based communications: We study the network performance for both urban and rural areas considering the impacts of blockage, tree foliage, and rain. Furthermore, performance comparisons are made between IAB and networks of which all or part of small BSs are fiber-connected. Following the analysis, it is observed that IAB may be a good backhauling solution with high flexibility and low time-to-market. The second part of the thesis focuses on improving the service coverage probability by carrying out topology optimization in IAB networks focusing on mmWave communication for different parameters, such as blockage, tree foliage, and antenna gain. In Paper B, we study topology optimization and routing in IAB networks in different perspectives. Thereby, we design efficient Genetic algorithm (GA)-based methods for IAB node distribution and non-IAB backhaul link placement. Furthermore, we study the effect of routing in the cases with temporal blockages. Finally, we briefly study the recent standardization developments, i.e., 3GPP Rel-16 as well as the\ua0Rel-17 discussions on routing. As the results show, with a proper planning on network deployment, IAB is an attractive solution to densify the networks for 5G and beyond. Finally, we focus on improving the performance of IAB networks with constrained deployment optimization. In Paper C, we consider various IAB network models while presenting different algorithms for constrained deployment optimization. Here, the constraints are coming from either inter-IAB distance limitations or geographical restrictions. As we show, proper network planning can considerably improve service coverage probability of IAB networks with deployment constraints

    On Topology Optimization and Routing in Integrated Access and Backhaul Networks: A Genetic Algorithm-Based Approach

    Get PDF
    In this paper, we study the problem of topology optimization and routing in integrated access and backhaul (IAB) networks, as one of the promising techniques for evolving 5G networks. We study the problem from different perspectives. We develop efficient genetic algorithm-based schemes for both IAB node placement and non-IAB backhaul link distribution, and evaluate the effect of routing on bypassing temporal blockages. Here, concentrating on millimeter wave-based communications, we study the service coverage probability, defined as the probability of the event that the user equipments\u27 (UEs) minimum rate requirements are satisfied. Moreover, we study the effect of different parameters such as the antenna gain, blockage, and tree foliage on the system performance. Finally, we summarize the recent Rel-16 as well as the upcoming Rel-17 3GPP discussions on routing in IAB networks, and discuss the main challenges for enabling mesh-based IAB networks. As we show, with a proper network topology, IAB is an attractive approach to enable the network densification required by 5G and beyond

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table
    • …
    corecore