1,397 research outputs found

    Neuronal avalanches differ from wakefulness to deep sleep - evidence from intracranial depth recordings in humans

    Get PDF
    Neuronal activity differs between wakefulness and sleep states. In contrast, an attractor state, called self-organized critical (SOC), was proposed to govern brain dynamics because it allows for optimal information coding. But is the human brain SOC for each vigilance state despite the variations in neuronal dynamics? We characterized neuronal avalanches – spatiotemporal waves of enhanced activity - from dense intracranial depth recordings in humans. We showed that avalanche distributions closely follow a power law – the hallmark feature of SOC - for each vigilance state. However, avalanches clearly differ with vigilance states: slow wave sleep (SWS) shows large avalanches, wakefulness intermediate, and rapid eye movement (REM) sleep small ones. Our SOC model, together with the data, suggested first that the differences are mediated by global but tiny changes in synaptic strength, and second, that the changes with vigilance states reflect small deviations from criticality to the subcritical regime, implying that the human brain does not operate at criticality proper but close to SOC. Independent of criticality, the analysis confirms that SWS shows increased correlations between cortical areas, and reveals that REM sleep shows more fragmented cortical dynamics

    Exponential inequalities for self-normalized martingales with applications

    Get PDF
    We propose several exponential inequalities for self-normalized martingales similar to those established by De la Pe\~{n}a. The keystone is the introduction of a new notion of random variable heavy on left or right. Applications associated with linear regressions, autoregressive and branching processes are also provided.Comment: Published in at http://dx.doi.org/10.1214/07-AAP506 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Cram\'{e}r moderate deviations for a supercritical Galton-Watson process

    Full text link
    Let (Zn)n≥0(Z_n)_{n\geq0} be a supercritical Galton-Watson process. The Lotka-Nagaev estimator Zn+1/ZnZ_{n+1}/Z_n is a common estimator for the offspring mean.In this paper, we establish some Cram\'{e}r moderate deviation results for the Lotka-Nagaev estimator via a martingale method. Applications to construction of confidence intervals are also given

    Inferring collective dynamical states from widely unobserved systems

    Full text link
    When assessing spatially-extended complex systems, one can rarely sample the states of all components. We show that this spatial subsampling typically leads to severe underestimation of the risk of instability in systems with propagating events. We derive a subsampling-invariant estimator, and demonstrate that it correctly infers the infectiousness of various diseases under subsampling, making it particularly useful in countries with unreliable case reports. In neuroscience, recordings are strongly limited by subsampling. Here, the subsampling-invariant estimator allows to revisit two prominent hypotheses about the brain's collective spiking dynamics: asynchronous-irregular or critical. We identify consistently for rat, cat and monkey a state that combines features of both and allows input to reverberate in the network for hundreds of milliseconds. Overall, owing to its ready applicability, the novel estimator paves the way to novel insight for the study of spatially-extended dynamical systems.Comment: 7 pages + 12 pages supplementary information + 7 supplementary figures. Title changed to match journal referenc

    Self-normalized Cram\'{e}r type moderate deviations for martingales and applications

    Full text link
    Cram\'er's moderate deviations give a quantitative estimate for the relative error of the normal approximation and provide theoretical justifications for many estimator used in statistics. In this paper, we establish self-normalized Cram\'{e}r type moderate deviations for martingales under some mile conditions. The result extends an earlier work of Fan, Grama, Liu and Shao [Bernoulli, 2019]. Moreover, applications of our result to Student's statistic, stationary martingale difference sequences and branching processes in a random environment are also discussed. In particular, we establish Cram\'{e}r type moderate deviations for Student's tt-statistic for branching processes in a random environment.Comment: 24 page

    Vere-Jones' Self-Similar Branching Model

    Full text link
    Motivated by its potential application to earthquake statistics, we study the exactly self-similar branching process introduced recently by Vere-Jones, which extends the ETAS class of conditional branching point-processes of triggered seismicity. One of the main ingredient of Vere-Jones' model is that the power law distribution of magnitudes m' of daughters of first-generation of a mother of magnitude m has two branches m'm with exponent beta+d, where beta and d are two positive parameters. We predict that the distribution of magnitudes of events triggered by a mother of magnitude mm over all generations has also two branches m'm with exponent beta+h, with h= d \sqrt{1-s}, where s is the fraction of triggered events. This corresponds to a renormalization of the exponent d into h by the hierarchy of successive generations of triggered events. The empirical absence of such two-branched distributions implies, if this model is seriously considered, that the earth is close to criticality (s close to 1) so that beta - h \approx \beta + h \approx \beta. We also find that, for a significant part of the parameter space, the distribution of magnitudes over a full catalog summed over an average steady flow of spontaneous sources (immigrants) reproduces the distribution of the spontaneous sources and is blind to the exponents beta, d of the distribution of triggered events.Comment: 13 page + 3 eps figure

    Large Deviations and Branching Processes

    Get PDF
    These lecture notes are devoted to present several uses of Large Deviation asymptotics in Branching Processes
    • …
    corecore