2,809 research outputs found

    Implicit Cooperative Positioning in Vehicular Networks

    Get PDF
    Absolute positioning of vehicles is based on Global Navigation Satellite Systems (GNSS) combined with on-board sensors and high-resolution maps. In Cooperative Intelligent Transportation Systems (C-ITS), the positioning performance can be augmented by means of vehicular networks that enable vehicles to share location-related information. This paper presents an Implicit Cooperative Positioning (ICP) algorithm that exploits the Vehicle-to-Vehicle (V2V) connectivity in an innovative manner, avoiding the use of explicit V2V measurements such as ranging. In the ICP approach, vehicles jointly localize non-cooperative physical features (such as people, traffic lights or inactive cars) in the surrounding areas, and use them as common noisy reference points to refine their location estimates. Information on sensed features are fused through V2V links by a consensus procedure, nested within a message passing algorithm, to enhance the vehicle localization accuracy. As positioning does not rely on explicit ranging information between vehicles, the proposed ICP method is amenable to implementation with off-the-shelf vehicular communication hardware. The localization algorithm is validated in different traffic scenarios, including a crossroad area with heterogeneous conditions in terms of feature density and V2V connectivity, as well as a real urban area by using Simulation of Urban MObility (SUMO) for traffic data generation. Performance results show that the proposed ICP method can significantly improve the vehicle location accuracy compared to the stand-alone GNSS, especially in harsh environments, such as in urban canyons, where the GNSS signal is highly degraded or denied.Comment: 15 pages, 10 figures, in review, 201

    Localization in Unstructured Environments: Towards Autonomous Robots in Forests with Delaunay Triangulation

    Full text link
    Autonomous harvesting and transportation is a long-term goal of the forest industry. One of the main challenges is the accurate localization of both vehicles and trees in a forest. Forests are unstructured environments where it is difficult to find a group of significant landmarks for current fast feature-based place recognition algorithms. This paper proposes a novel approach where local observations are matched to a general tree map using the Delaunay triangularization as the representation format. Instead of point cloud based matching methods, we utilize a topology-based method. First, tree trunk positions are registered at a prior run done by a forest harvester. Second, the resulting map is Delaunay triangularized. Third, a local submap of the autonomous robot is registered, triangularized and matched using triangular similarity maximization to estimate the position of the robot. We test our method on a dataset accumulated from a forestry site at Lieksa, Finland. A total length of 2100\,m of harvester path was recorded by an industrial harvester with a 3D laser scanner and a geolocation unit fixed to the frame. Our experiments show a 12\,cm s.t.d. in the location accuracy and with real-time data processing for speeds not exceeding 0.5\,m/s. The accuracy and speed limit is realistic during forest operations

    Quantitative Performance Assessment of LiDAR-based Vehicle Contour Estimation Algorithms for Integrated Vehicle Safety Applications

    Get PDF
    Many nations and organizations are committing to achieving the goal of `Vision Zero\u27 and eliminate road traffic related deaths around the world. Industry continues to develop integrated safety systems to make vehicles safer, smarter and more capable in safety critical scenarios. Passive safety systems are now focusing on pre-crash deployment of restraint systems to better protect vehicle passengers. Current commonly used bounding box methods for shape estimation of crash partners lack the fidelity required for edge case collision detection and advanced crash modeling. This research presents a novel algorithm for robust and accurate contour estimation of opposing vehicles. The presented method is evaluated via a developed framework for key performance metrics and compared to alternative algorithms found in literature

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Robust Continuous System Integration for Critical Deep-Sea Robot Operations Using Knowledge-Enabled Simulation in the Loop

    Full text link
    Deep-sea robot operations demand a high level of safety, efficiency and reliability. As a consequence, measures within the development stage have to be implemented to extensively evaluate and benchmark system components ranging from data acquisition, perception and localization to control. We present an approach based on high-fidelity simulation that embeds spatial and environmental conditions from recorded real-world data. This simulation in the loop (SIL) methodology allows for mitigating the discrepancy between simulation and real-world conditions, e.g. regarding sensor noise. As a result, this work provides a platform to thoroughly investigate and benchmark behaviors of system components concurrently under real and simulated conditions. The conducted evaluation shows the benefit of the proposed work in tasks related to perception and self-localization under changing spatial and environmental conditions.Comment: published on IROS 201

    Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions

    Full text link
    [EN] Advances in information and signal processing technologies have a significant impact on autonomous driving (AD), improving driving safety while minimizing the efforts of human drivers with the help of advanced artificial intelligence (AI) techniques. Recently, deep learning (DL) approaches have solved several real-world problems of complex nature. However, their strengths in terms of control processes for AD have not been deeply investigated and highlighted yet. This survey highlights the power of DL architectures in terms of reliability and efficient real-time performance and overviews state-of-the-art strategies for safe AD, with their major achievements and limitations. Furthermore, it covers major embodiments of DL along the AD pipeline including measurement, analysis, and execution, with a focus on road, lane, vehicle, pedestrian, drowsiness detection, collision avoidance, and traffic sign detection through sensing and vision-based DL methods. In addition, we discuss on the performance of several reviewed methods by using different evaluation metrics, with critics on their pros and cons. Finally, this survey highlights the current issues of safe DL-based AD with a prospect of recommendations for future research, rounding up a reference material for newcomers and researchers willing to join this vibrant area of Intelligent Transportation Systems.This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) Grant funded by the Korea Government (MSIT) (2019-0-00136, Development of AI-Convergence Technologies for Smart City Industry Productivity Innovation); The work of Javier Del Ser was supported by the Basque Government through the EMAITEK and ELKARTEK Programs, as well as by the Department of Education of this institution (Consolidated Research Group MATHMODE, IT1294-19); VHCA received support from the Brazilian National Council for Research and Development (CNPq, Grant #304315/2017-6 and #430274/2018-1).Muhammad, K.; Ullah, A.; Lloret, J.; Del Ser, J.; De Albuquerque, VHC. (2021). Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions. IEEE Transactions on Intelligent Transportation Systems. 22(7):4316-4336. https://doi.org/10.1109/TITS.2020.30322274316433622

    Survey on Recent Advances in Integrated GNSSs Towards Seamless Navigation Using Multi-Sensor Fusion Technology

    Get PDF
    During the past few decades, the presence of global navigation satellite systems (GNSSs) such as GPS, GLONASS, Beidou and Galileo has facilitated positioning, navigation and timing (PNT) for various outdoor applications. With the rapid increase in the number of orbiting satellites per GNSS, enhancements in the satellite-based augmentation systems (SBASs) such as EGNOS and WAAS, as well as commissioning new GNSS constellations, the PNT capabilities are maximized to reach new frontiers. Additionally, the recent developments in precise point positioning (PPP) and real time kinematic (RTK) algorithms have provided more feasibility to carrier-phase precision positioning solutions up to the third-dimensional localization. With the rapid growth of internet of things (IoT) applications, seamless navigation becomes very crucial for numerous PNT dependent applications especially in sensitive fields such as safety and industrial applications. Throughout the years, GNSSs have maintained sufficiently acceptable performance in PNT, in RTK and PPP applications however GNSS experienced major challenges in some complicated signal environments. In many scenarios, GNSS signal suffers deterioration due to multipath fading and attenuation in densely obscured environments that comprise stout obstructions. Recently, there has been a growing demand e.g. in the autonomous-things domain in adopting reliable systems that accurately estimate position, velocity and time (PVT) observables. Such demand in many applications also facilitates the retrieval of information about the six degrees of freedom (6-DOF - x, y, z, roll, pitch, and heading) movements of the target anchors. Numerous modern applications are regarded as beneficiaries of precise PNT solutions such as the unmanned aerial vehicles (UAV), the automatic guided vehicles (AGV) and the intelligent transportation system (ITS). Hence, multi-sensor fusion technology has become very vital in seamless navigation systems owing to its complementary capabilities to GNSSs. Fusion-based positioning in multi-sensor technology comprises the use of multiple sensors measurements for further refinement in addition to the primary GNSS, which results in high precision and less erroneous localization. Inertial navigation systems (INSs) and their inertial measurement units (IMUs) are the most commonly used technologies for augmenting GNSS in multi-sensor integrated systems. In this article, we survey the most recent literature on multi-sensor GNSS technology for seamless navigation. We provide an overall perspective for the advantages, the challenges and the recent developments of the fusion-based GNSS navigation realm as well as analyze the gap between scientific advances and commercial offerings. INS/GNSS and IMU/GNSS systems have proven to be very reliable in GNSS-denied environments where satellite signal degradation is at its peak, that is why both integrated systems are very abundant in the relevant literature. In addition, the light detection and ranging (LiDAR) systems are widely adopted in the literature for its capability to provide 6-DOF to mobile vehicles and autonomous robots. LiDARs are very accurate systems however they are not suitable for low-cost positioning due to the expensive initial costs. Moreover, several other techniques from the radio frequency (RF) spectrum are utilized as multi-sensor systems such as cellular networks, WiFi, ultra-wideband (UWB) and Bluetooth. The cellular-based systems are very suitable for outdoor navigation applications while WiFi-based, UWB-based and Bluetooth-based systems are efficient in indoor positioning systems (IPS). However, to achieve reliable PVT estimations in multi-sensor GNSS navigation, optimal algorithms should be developed to mitigate the estimation errors resulting from non-line-of-sight (NLOS) GNSS situations. Examples of the most commonly used algorithms for trilateration-based positioning are Kalman filters, weighted least square (WLS), particle filters (PF) and many other hybrid algorithms by mixing one or more algorithms together. In this paper, the reviewed articles under study and comparison are presented by highlighting their motivation, the methodology of implementation, the modelling utilized and the performed experiments. Then they are assessed with respect to the published results focusing on achieved accuracy, robustness and overall implementation cost-benefits as performance metrics. Our summarizing survey assesses the most promising, highly ranked and recent articles that comprise insights into the future of GNSS technology with multi-sensor fusion technique.©2021 The Authors. Published by ION.fi=vertaisarvioimaton|en=nonPeerReviewed
    corecore