157 research outputs found

    Tahap penguasaan, sikap dan minat pelajar Kolej Kemahiran Tinggi MARA terhadap mata pelajaran Bahasa Inggeris

    Get PDF
    Kajian ini dilakukan untuk mengenal pasti tahap penguasaan, sikap dan minat pelajar Kolej Kemahiran Tinggi Mara Sri Gading terhadap Bahasa Inggeris. Kajian yang dijalankan ini berbentuk deskriptif atau lebih dikenali sebagai kaedah tinjauan. Seramai 325 orang pelajar Diploma in Construction Technology dari Kolej Kemahiran Tinggi Mara di daerah Batu Pahat telah dipilih sebagai sampel dalam kajian ini. Data yang diperoleh melalui instrument soal selidik telah dianalisis untuk mendapatkan pengukuran min, sisihan piawai, dan Pekali Korelasi Pearson untuk melihat hubungan hasil dapatan data. Manakala, frekuensi dan peratusan digunakan bagi mengukur penguasaan pelajar. Hasil dapatan kajian menunjukkan bahawa tahap penguasaan Bahasa Inggeris pelajar adalah berada pada tahap sederhana manakala faktor utama yang mempengaruhi penguasaan Bahasa Inggeris tersebut adalah minat diikuti oleh sikap. Hasil dapatan menggunakan pekali Korelasi Pearson juga menunjukkan bahawa terdapat hubungan yang signifikan antara sikap dengan penguasaan Bahasa Inggeris dan antara minat dengan penguasaan Bahasa Inggeris. Kajian menunjukkan bahawa semakin positif sikap dan minat pelajar terhadap pengajaran dan pembelajaran Bahasa Inggeris semakin tinggi pencapaian mereka. Hasil daripada kajian ini diharapkan dapat membantu pelajar dalam meningkatkan penguasaan Bahasa Inggeris dengan memupuk sikap positif dalam diri serta meningkatkan minat mereka terhadap Bahasa Inggeris dengan lebih baik. Oleh itu, diharap kajian ini dapat memberi panduan kepada pihak-pihak yang terlibat dalam membuat kajian yang akan datang

    Towards Visual Localization, Mapping and Moving Objects Tracking by a Mobile Robot: a Geometric and Probabilistic Approach

    Get PDF
    Dans cette thĂšse, nous rĂ©solvons le problĂšme de reconstruire simultanĂ©ment une reprĂ©sentation de la gĂ©omĂ©trie du monde, de la trajectoire de l'observateur, et de la trajectoire des objets mobiles, Ă  l'aide de la vision. Nous divisons le problĂšme en trois Ă©tapes : D'abord, nous donnons une solution au problĂšme de la cartographie et localisation simultanĂ©es pour la vision monoculaire qui fonctionne dans les situations les moins bien conditionnĂ©es gĂ©omĂ©triquement. Ensuite, nous incorporons l'observabilitĂ© 3D instantanĂ©e en dupliquant le matĂ©riel de vision avec traitement monoculaire. Ceci Ă©limine les inconvĂ©nients inhĂ©rents aux systĂšmes stĂ©rĂ©o classiques. Nous ajoutons enfin la dĂ©tection et suivi des objets mobiles proches en nous servant de cette observabilitĂ© 3D. Nous choisissons une reprĂ©sentation Ă©parse et ponctuelle du monde et ses objets. La charge calculatoire des algorithmes de perception est allĂ©gĂ©e en focalisant activement l'attention aux rĂ©gions de l'image avec plus d'intĂ©rĂȘt. ABSTRACT : In this thesis we give new means for a machine to understand complex and dynamic visual scenes in real time. In particular, we solve the problem of simultaneously reconstructing a certain representation of the world's geometry, the observer's trajectory, and the moving objects' structures and trajectories, with the aid of vision exteroceptive sensors. We proceeded by dividing the problem into three main steps: First, we give a solution to the Simultaneous Localization And Mapping problem (SLAM) for monocular vision that is able to adequately perform in the most ill-conditioned situations: those where the observer approaches the scene in straight line. Second, we incorporate full 3D instantaneous observability by duplicating vision hardware with monocular algorithms. This permits us to avoid some of the inherent drawbacks of classic stereo systems, notably their limited range of 3D observability and the necessity of frequent mechanical calibration. Third, we add detection and tracking of moving objects by making use of this full 3D observability, whose necessity we judge almost inevitable. We choose a sparse, punctual representation of both the world and the moving objects in order to alleviate the computational payload of the image processing algorithms, which are required to extract the necessary geometrical information out of the images. This alleviation is additionally supported by active feature detection and search mechanisms which focus the attention to those image regions with the highest interest. This focusing is achieved by an extensive exploitation of the current knowledge available on the system (all the mapped information), something that we finally highlight to be the ultimate key to success

    Mobile robot localization using a Kalman filter and relative bearing measurements to known landmarks

    Get PDF
    This paper discusses mobile robot localization using a single, fixed camera that is capable of detecting predefined landmarks in the environment. For each visible landmark, the camera provides a relative bearing but not a relative range. This research represents work toward an inexpensive sensor that could be added to a mobile robot in order to provide more accurate estimates of the robot\u27s location. It uses the Kalman filter as a framework, which is a proven method for incorporating sensor data into navigation problems. In the simulations presented later, it is assumed that the filter can perform accurate feature recognition. In the experimental setup, however, a webcam and an open source library are used to recognize and track bearing to a set of unique markers. Although this research requires that the landmark locations be known, in contrast to research in simultaneous localization and mapping, the results are still useful in an industrial setting where placing known landmarks would be acceptable

    An Audio-visual Solution to Sound Source Localization and Tracking with Applications to HRI

    Full text link
    Robot audition is an emerging and growing branch in the robotic community and is necessary for a natural Human-Robot Interaction (HRI). In this paper, we propose a framework that integrates advances from Simultaneous Localization And Mapping (SLAM), bearing-only target tracking, and robot audition techniques into a unifed system for sound source identification, localization, and tracking. In indoors, acoustic observations are often highly noisy and corrupted due to reverberations, the robot ego-motion and background noise, and possible discontinuous nature of them. Therefore, in everyday interaction scenarios, the system requires accommodating for outliers, robust data association, and appropriate management of the landmarks, i.e. sound sources. We solve the robot self-localization and environment representation problems using an RGB-D SLAM algorithm, and sound source localization and tracking using recursive Bayesian estimation in the form of the extended Kalman Filter with unknown data associations and an unknown number of landmarks. The experimental results show that the proposed system performs well in the medium-sized cluttered indoor environment

    Multi-sensor fusion for automated guided vehicle positioning

    Get PDF
    This thesis presents positioning system of Automated Guided Vehicles or AGV for short, which is a mobile robot that follows wire or magnetic tape in the floor to navigate from point to another in workspace. AGV serves in industrial fields to convey materials and products around the manufacturing facility or warehouse thus, time of manufacturing process and number of labors can be reduced accordingly. In contrast, the limitation of its movement specified by the guidance path considered as a main weakness. In order to make the AGV moves freely without guidance path, it is essential to know current position first before starts navigate to target place then, the position has to be updating during movement. For mobile robots positioning and path tracking, two basic techniques are usually used, relative and absolute positioning. Relative positioning techniques based on measuring travelled distance by the robot and accumulate it to its initial position to estimate current position, which lead to drift error over time. Digital compass, Global Positioning System (GPS), and landmarks based positioning are examples of absolute positioning techniques, in which robot position estimated from single reading. Absolute positioning does not have drift error but the system cost is high and has signal blockage inside buildings as in case of landmarks and GPS respectively. The developed positioning system based on odometry, accelerometer, and digital compass for path tracking. RFID landmarks installed in predefined positions and ultrasonic GPS used to eliminate drift error in position estimated from odometry and accelerometer. Radio frequency module is used to transfer sensors reading from the mobile robot to a host PC has software program written on LabVIEW, which has a positioning algorithm and graphical display for robot position. The experiments conducted have illustrated that the developed sensor fusion positioning system can be integrated with AGV to replace the ordinary guidance system. It will give AGV flexibility in task manipulation in industrial application

    3 known landmarks are enough for solving planar bearing SLAM and fully reconstruct unknown inputs

    Get PDF
    In this paper we show that for an observer moving in the plane with no other information than the measurement of relative bearing to three known landmarks, it is possible to completely reconstruct its position and velocity. In particular this applies to the case where no model of the vehicle, nor odometry or acceleration measurements are available. Furthermore, in the same hypotheses, the position of any further landmark can be reconstructed from its bearing only. These results are more general than what is currently known on nonlinear observability of the SLAM problem, which relies on known observer velocities. Our results are also more general than the 2D version of known structure-from-motion observability results, which assume unknown but constant velocities. The proposed method is used to build a nonlinear observer directly applicable to a range of problems from computer vision to autonomous visual navigation

    Assessment of Camera Pose Estimation Using Geo-Located Images from Simultaneous Localization and Mapping

    Get PDF
    This research proposes a method for enabling low-cost camera localization using geo-located images generated with factorgraph-based Simultaneous Localization And Mapping (SLAM). The SLAM results are paired with panoramic image data to generate geo-located images, which can be used to locate and orient low-cost cameras. This study determines the efficacy of using a spherical camera and LIDAR sensor to enable localization for a wide range of cameras with low size, weight, power, and cost. This includes determining the accuracy of SLAM when geo-referencing images, along with introducing a promising method for extracting range measurements from monocular images of known features

    A multisensor SLAM for dense maps of large scale environments under poor lighting conditions

    Get PDF
    This thesis describes the development and implementation of a multisensor large scale autonomous mapping system for surveying tasks in underground mines. The hazardous nature of the underground mining industry has resulted in a push towards autonomous solutions to the most dangerous operations, including surveying tasks. Many existing autonomous mapping techniques rely on approaches to the Simultaneous Localization and Mapping (SLAM) problem which are not suited to the extreme characteristics of active underground mining environments. Our proposed multisensor system has been designed from the outset to address the unique challenges associated with underground SLAM. The robustness, self-containment and portability of the system maximize the potential applications.The multisensor mapping solution proposed as a result of this work is based on a fusion of omnidirectional bearing-only vision-based localization and 3D laser point cloud registration. By combining these two SLAM techniques it is possible to achieve some of the advantages of both approaches – the real-time attributes of vision-based SLAM and the dense, high precision maps obtained through 3D lasers. The result is a viable autonomous mapping solution suitable for application in challenging underground mining environments.A further improvement to the robustness of the proposed multisensor SLAM system is a consequence of incorporating colour information into vision-based localization. Underground mining environments are often dominated by dynamic sources of illumination which can cause inconsistent feature motion during localization. Colour information is utilized to identify and remove features resulting from illumination artefacts and to improve the monochrome based feature matching between frames.Finally, the proposed multisensor mapping system is implemented and evaluated in both above ground and underground scenarios. The resulting large scale maps contained a maximum offset error of ±30mm for mapping tasks with lengths over 100m
    • 

    corecore