587 research outputs found

    Coarse-to-Fine Adaptive People Detection for Video Sequences by Maximizing Mutual Information

    Full text link
    Applying people detectors to unseen data is challenging since patterns distributions, such as viewpoints, motion, poses, backgrounds, occlusions and people sizes, may significantly differ from the ones of the training dataset. In this paper, we propose a coarse-to-fine framework to adapt frame by frame people detectors during runtime classification, without requiring any additional manually labeled ground truth apart from the offline training of the detection model. Such adaptation make use of multiple detectors mutual information, i.e., similarities and dissimilarities of detectors estimated and agreed by pair-wise correlating their outputs. Globally, the proposed adaptation discriminates between relevant instants in a video sequence, i.e., identifies the representative frames for an adaptation of the system. Locally, the proposed adaptation identifies the best configuration (i.e., detection threshold) of each detector under analysis, maximizing the mutual information to obtain the detection threshold of each detector. The proposed coarse-to-fine approach does not require training the detectors for each new scenario and uses standard people detector outputs, i.e., bounding boxes. The experimental results demonstrate that the proposed approach outperforms state-of-the-art detectors whose optimal threshold configurations are previously determined and fixed from offline training dataThis work has been partially supported by the Spanish government under the project TEC2014-53176-R (HAVideo

    Deep Learning of Scene-Specific Classifier for Pedestrian Detection in Dubai

    Get PDF
    The performance of a generic pedestrian detector varies based on the data fed to it; when applied to a specific scene, its performance degrades dramatically, which require the detector to be fed with the specific target in mind so that it can produce the desired predictions and detect for the user the specified target. In this paper, I propose to feed the automated specialization of a scene-specific pedestrian detector, with multiple sources from pictures to even videos beginning with a generic video surveillance detector, however manually marking samples to ease the process, as the knowledge accumulated from the master program is still insufficient to produce high-end automated sample marking for the detector. The key idea is to consider a deep detector as a feature that produces a perception of the likelihood of a pedestrian being detected in the target. The system then will be fed with the manually marked samples to enhance its performance and the usage of an already existing system using the Monte Carlo sequential filter system. There has been the implementation of the pedestrian detectors in China, where it showcased the different patterns, the detector can classify and assess whether a pedestrian is present within the testing data or not. The project is truly fascinating as it shows how a machine can learn when fed with the right data and produce sensible results that lead to human renovation and up their living standards by decreasing the number of accidents related to pedestrians affecting the overall rate of accidents. “Many real-world data analysis tasks involve estimating unknown quantities from some given observations” as addressed by the authors within their report on Monte Carlo methods (Doucet A., de Freitas N., Gordon N.). In order to compute rational approximations, it is also important to follow numerical techniques. The techniques of Monte Carlo method (MCM) are powerful tools that allow us to achieve this objective (Andrieu C., Doucet A., Punskaya E.)

    Pedestrian Attribute Recognition: A Survey

    Full text link
    Recognizing pedestrian attributes is an important task in computer vision community due to it plays an important role in video surveillance. Many algorithms has been proposed to handle this task. The goal of this paper is to review existing works using traditional methods or based on deep learning networks. Firstly, we introduce the background of pedestrian attributes recognition (PAR, for short), including the fundamental concepts of pedestrian attributes and corresponding challenges. Secondly, we introduce existing benchmarks, including popular datasets and evaluation criterion. Thirdly, we analyse the concept of multi-task learning and multi-label learning, and also explain the relations between these two learning algorithms and pedestrian attribute recognition. We also review some popular network architectures which have widely applied in the deep learning community. Fourthly, we analyse popular solutions for this task, such as attributes group, part-based, \emph{etc}. Fifthly, we shown some applications which takes pedestrian attributes into consideration and achieve better performance. Finally, we summarized this paper and give several possible research directions for pedestrian attributes recognition. The project page of this paper can be found from the following website: \url{https://sites.google.com/view/ahu-pedestrianattributes/}.Comment: Check our project page for High Resolution version of this survey: https://sites.google.com/view/ahu-pedestrianattributes

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    A survey on generative adversarial networks for imbalance problems in computer vision tasks

    Get PDF
    Any computer vision application development starts off by acquiring images and data, then preprocessing and pattern recognition steps to perform a task. When the acquired images are highly imbalanced and not adequate, the desired task may not be achievable. Unfortunately, the occurrence of imbalance problems in acquired image datasets in certain complex real-world problems such as anomaly detection, emotion recognition, medical image analysis, fraud detection, metallic surface defect detection, disaster prediction, etc., are inevitable. The performance of computer vision algorithms can significantly deteriorate when the training dataset is imbalanced. In recent years, Generative Adversarial Neural Networks (GANs) have gained immense attention by researchers across a variety of application domains due to their capability to model complex real-world image data. It is particularly important that GANs can not only be used to generate synthetic images, but also its fascinating adversarial learning idea showed good potential in restoring balance in imbalanced datasets. In this paper, we examine the most recent developments of GANs based techniques for addressing imbalance problems in image data. The real-world challenges and implementations of synthetic image generation based on GANs are extensively covered in this survey. Our survey first introduces various imbalance problems in computer vision tasks and its existing solutions, and then examines key concepts such as deep generative image models and GANs. After that, we propose a taxonomy to summarize GANs based techniques for addressing imbalance problems in computer vision tasks into three major categories: 1. Image level imbalances in classification, 2. object level imbalances in object detection and 3. pixel level imbalances in segmentation tasks. We elaborate the imbalance problems of each group, and provide GANs based solutions in each group. Readers will understand how GANs based techniques can handle the problem of imbalances and boost performance of the computer vision algorithms

    A weakly-supervised approach for discovering common objects in airport video surveillance footage

    Get PDF
    Object detection in video is a relevant task in computer vision. Standard and current detectors are typically trained in a strongly supervised way, what requires a huge amount of labelled data. In contrast, in this paper we focus on object discovery in video sequences by using sets of unlabelled data. Thus, we present an approach based on the use of two region proposal algorithms (a pretrained Region Proposal Network and an Optical Flow Proposal) to produce regions of interest that will be grouped using a clustering algorithm. Therefore, our system does not require the collaboration of a human except for assigning human understandable labels to the discovered clusters. We evaluate our approach in a set of videos recorded at the outdoor area of an airport where the aeroplanes park to load passengers and luggage (apron area). Our experimental results suggest that the use of an unsupervised approach is valid for automatic object discovery in video sequences, obtaining a CorLoc of 86.8 and a mAP of 0.374 compared to a CorLoc of 70.4 and mAP of 0.683 achieved by a supervised Faster R-CNN trained and tested on the same dataset.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore