610 research outputs found

    Physical-Layer Cooperation in Coded OFDM Relaying Systems

    Get PDF
    Mobile communication systems nowadays require ever-increasing data rate and coverage of wide areas. One promising approach to achieve this goal is the application of cooperative communications enabled by introducing intermediate nodes known as relays to support the transmission between terminals. By processing and forwarding the receive message at the relays, the path-loss effect between the source and the destination is mitigated. One major limit factor for relay assisted communications is that a relay cannot transmit and receive using the same physical resources. Therefore, a half-duplex constraint is commonly assumed resulting in halved spectral efficiency. To combat this drawback, two-way relaying is introduced, where two sources exchange information with each. On the other hand, due to the physical limitation of the relays, e.g., wireless sensor nodes, it's not possible to implement multiple antennas at one relay, which prohibits the application of multiple-input multiple-output (MIMO) techniques. However, when treating multiple relays as a cluster, a virtual antenna array is formed to perform MIMO techniques in a distributed manner. %This thesis aims at designing efficient one-way and two-way relaying schemes. Specifically, existing schemes from the literature are improved and new schemes are developed with the emphasis on coded orthogonal frequency division multiplexing (OFDM) transmissions. Of special interest is the application of physical-layer network coding (PLNC) for two-phase two-way relaying. In this case, a network coded message is estimated from the superimposed receive signal at the relay using PLNC schemes. The schemes are investigated based on a mutual information analysis and their performance are improved by a newly proposed phase control strategy. Furthermore, performance degradation due to system asynchrony is mitigated depending on different PLNC schemes. When multiple relays are available, novel cooperation schemes allowing information exchange within the relay cluster are proposed that facilitate distributed MIMO reception and transmission. Additionally, smart signaling approaches are presented to enable the cooperation at different levels with the cooperation overhead taken into account adequately in system performance evaluation

    Modern Random Access for Satellite Communications

    Full text link
    The present PhD dissertation focuses on modern random access (RA) techniques. In the first part an slot- and frame-asynchronous RA scheme adopting replicas, successive interference cancellation and combining techniques is presented and its performance analysed. The comparison of both slot-synchronous and asynchronous RA at higher layer, follows. Next, the optimization procedure, for slot-synchronous RA with irregular repetitions, is extended to the Rayleigh block fading channel. Finally, random access with multiple receivers is considered.Comment: PhD Thesis, 196 page

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies

    Full text link
    This document provides the most recent updates on the technical contributions and research challenges focused in WP3. Each Technology Component (TeC) has been evaluated under possible uniform assessment framework of WP3 which is based on the simulation guidelines of WP6. The performance assessment is supported by the simulation results which are in their mature and stable state. An update on the Most Promising Technology Approaches (MPTAs) and their associated TeCs is the main focus of this document. Based on the input of all the TeCs in WP3, a consolidated view of WP3 on the role of multinode/multi-antenna transmission technologies in 5G systems has also been provided. This consolidated view is further supported in this document by the presentation of the impact of MPTAs on METIS scenarios and the addressed METIS goals.Aziz, D.; Baracca, P.; De Carvalho, E.; Fantini, R.; Rajatheva, N.; Popovski, P.; Sørensen, JH.... (2015). D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675

    Contributions to the routing of traffic flows in multi-hop IEEE 802.11 wireless networks

    Get PDF
    The IEEE 802.11 standard was not initially designed to provide multi-hop capabilities. Therefore, providing a proper traffic performance in Multi-Hop IEEE 802.11 Wireless Networks (MIWNs) becomes a significant challenge. The approach followed in this thesis has been focused on the routing layer in order to obtain applicable solutions not dependent on a specific hardware or driver. Nevertheless, as is the case of most of the research on this field, a cross-layer design has been adopted. Therefore, one of the first tasks of this work was devoted to the study of the phenomena which affect the performance of the flows in MIWNs. Different estimation methodologies and models are presented and analyzed. The first main contribution of this thesis is related to route creation procedures. First, FB-AODV is introduced, which creates routes and forwards packets according to the flows on the contrary to basic AODV which is destination-based. This enhancement permits to balance the load through the network and gives a finer granularity in the control and monitoring of the flows. Results showed that it clearly benefits the performance of the flows. Secondly, a novel routing metric called Weighted Contention and Interference routing Metric (WCIM) is presented. In all analyzed scenarios, WCIM outperformed the other analyzed state-of-the-art routing metrics due to a proper leveraging of the number of hops, the link quality and the suffered contention and interference. The second main contribution of this thesis is focused on route maintenance. Generally, route recovery procedures are devoted to the detection of link breaks due to mobility or fading. However, other phenomena like the arrival of new flows can degrade the performance of active flows. DEMON, which is designed as an enhancement of FB-AODV, allows the preemptive recovery of degraded routes by passively monitoring the performance of active flows. Results showed that DEMON obtains similar or better results than other published solutions in mobile scenarios, while it clearly outperforms the performance of default AODV under congestion Finally, the last chapter of this thesis deals with channel assignment in multi-radio solutions. The main challenge of this research area relies on the circular relationship between channel assignment and routing; channel assignment determines the routes that can be created, while the created routes decide the real channel diversity of the network and the level of interference between the links. Therefore, proposals which join routing and channel assignment are generally complex, centralized and based on traffic patterns, limiting their practical implementation. On the contrary, the mechanisms presented in this thesis are distributed and readily applicable. First, the Interference-based Dynamic Channel Assignment (IDCA) algorithm is introduced. IDCA is a distributed and dynamic channel assignment based on the interference caused by active flows which uses a common channel in order to assure connectivity. In general, IDCA leads to an interesting trade-off between connectivity preservation and channel diversity. Secondly, MR-DEMON is introduced as way of joining channel assignment and route maintenance. As DEMON, MR-DEMON monitors the performance of the active flows traversing the links, but, instead of alerting the source when noticing degradation, it permits reallocating the flows to less interfered channels. Joining route recovery instead of route creation simplifies its application, since traffic patterns are not needed and channel reassignments can be locally decided. The evaluation of MR-DEMON proved that it clearly benefits the performance of IDCA. Also, it improves DEMON functionality by decreasing the number of route recoveries from the source, leading to a lower overhead.El estándar IEEE 802.11 no fue diseñado inicialmente para soportar capacidades multi-salto. Debido a ello, proveer unas prestaciones adecuadas a los flujos de tráfico que atraviesan redes inalámbricas multi-salto IEEE 802.11 supone un reto significativo. La investigación desarrollada en esta tesis se ha centrado en la capa de encaminamiento con el objetivo de obtener soluciones aplicables y no dependientes de un hardware específico. Sin embargo, debido al gran impacto de fenómenos y parámetros relacionados con las capas físicas y de acceso al medio sobre las prestaciones de los tráficos de datos, se han adoptado soluciones de tipo cross-layer. Es por ello que las primeras tareas de la investigación, presentadas en los capítulos iniciales, se dedicaron al estudio y caracterización de estos fenómenos. La primera contribución principal de esta tesis se centra en mecanismos relacionados con la creación de las rutas. Primero, se introduce una mejora del protocolo AODV, que permite crear rutas y encaminar paquetes en base a los flujos de datos, en lugar de en base a los destinos como se da en el caso básico. Esto permite balacear la carga de la red y otorga un mayor control sobre los flujos activos y sus prestaciones, mejorando el rendimiento general de la red. Seguidamente, se presenta una métrica de encaminamiento sensible a la interferencia de la red y la calidad de los enlaces. Los resultados analizados, basados en la simulación de diferentes escenarios, demuestran que mejora significativamente las prestaciones de otras métricas del estado del arte. La segunda contribución está relacionada con el mantenimiento de las rutas activas. Generalmente, los mecanismos de mantenimiento se centran principalmente en la detección de enlaces rotos debido a la movilidad de los nodos o a la propagación inalámbrica. Sin embargo, otros fenómenos como la interferencia y congestión provocada por la llegada de nuevos flujos pueden degradar de forma significativa las prestaciones de los tráficos activos. En base a ello, se diseña un mecanismo de mantenimiento preventivo de rutas, que monitoriza las prestaciones de los flujos activos y permite su reencaminamiento en caso de detectar rutas degradadas. La evaluación de esta solución muestra una mejora significativa sobre el mantenimiento de rutas básico en escenarios congestionados, mientras que en escenarios con nodos móviles obtiene resultados similares o puntualmente mejores que otros mecanismos preventivos diseñados específicamente para casos con movilidad. Finalmente, el último capítulo de la tesis se centra en la asignación de canales en entornos multi-canal y multi-radio con el objetivo de minimizar la interferencia entre flujos activos. El reto principal en este campo es la dependencia circular que se da entre la asignación de canales y la creación de rutas: la asignación de canales determina los enlaces existentes la red y por ello las rutas que se podrán crear, pero son finalmente las rutas y los tráficos activos quienes determinan el nivel real de interferencia que se dará en la red. Es por ello que las soluciones que proponen unificar la asignación de canales y el encaminamiento de tráficos son generalmente complejas, centralizadas y basadas en patrones de tráfico, lo que limita su implementación en entornos reales. En cambio, en nuestro caso adoptamos una solución distribuida y con mayor aplicabilidad. Primero, se define un algoritmo de selección de canales dinámico basado en la interferencia de los flujos activos, que utiliza un canal común en todos los nodos para asegurar la conectividad de la red. A continuación, se introduce un mecanismo que unifica la asignación de canales con el mantenimiento preventivo de las rutas, permitiendo reasignar flujos degradados a otros canales disponibles en lugar de reencaminarlos completamente. Ambas soluciones demuestran ser beneficiosas en este tipo de entornos.Postprint (published version

    Physical layer security solutions against passive and colluding eavesdroppers in large wireless networks and impulsive noise environments

    Get PDF
    Wireless networks have experienced rapid evolutions toward sustainability, scalability and interoperability. The digital economy is driven by future networked societies to a more holistic community of intelligent infrastructures and connected services for a more sustainable and smarter society. Furthermore, an enormous amount of sensitive and confidential information, e.g., medical records, electronic media, financial data, and customer files, is transmitted via wireless channels. The implementation of higher layer key distribution and management was challenged by the emergence of these new advanced systems. In order to resist various malicious abuses and security attacks, physical layer security (PLS) has become an appealing alternative. The basic concept behind PLS is to exploit the characteristics of wireless channels for the confidentiality. Its target is to blind the eavesdroppers such that they cannot extract any confidential information from the received signals. This thesis presents solutions and analyses to improve the PLS in wireless networks. In the second chapter, we investigate the secrecy capacity performance of an amplify-andforward (AF) dual-hop network for both distributed beamforming (DBF) and opportunistic relaying (OR) techniques. We derive the capacity scaling for two large sets; trustworthy relays and untrustworthy aggressive relays cooperating together with a wire-tapper aiming to intercept the message. We show that the capacity scaling in the DBF is lower bounded by a value which depends on the ratio between the number of the trustworthy and the untrustworthy aggressive relays, whereas the capacity scaling of OR is upper bounded by a value depending on the number of relays as well as the signal to noise ratio (SNR). In the third chapter, we propose a new location-based multicasting technique, for dual phase AF large networks, aiming to improve the security in the presence of non-colluding passive eavesdroppers. We analytically demonstrate that the proposed technique increases the security by decreasing the probability of re-choosing a sector that has eavesdroppers, for each transmission time. Moreover, we also show that the secrecy capacity scaling of our technique is the same as for broadcasting. Hereafter, the lower and upper bounds of the secrecy outage probability are calculated, and it is shown that the security performance is remarkably enhanced, compared to the conventional multicasting technique. In the fourth chapter, we propose a new cooperative protocol, for dual phase amplify-andforward large wireless sensor networks, aiming to improve the transmission security while taking into account the limited capabilities of the sensor nodes. In such a network, a portion of the K relays can be potential passive eavesdroppers. To reduce the impact of these untrustworthy relays on the network security, we propose a new transmission protocol, where the source agrees to share with the destination a given channel state information (CSI) of source-trusted relay-destination link to encode the message. Then, the source will use this CSI again to map the right message to a certain sector while transmitting fake messages to the other sectors. Adopting such a security protocol is promising because of the availability of a high number of cheap electronic sensors with limited computational capabilities. For the proposed scheme, we derived the secrecy outage probability (SOP) and demonstrated that the probability of receiving the right encoded information by an untrustworthy relay is inversely proportional to the number of sectors. We also show that the aggressive behavior of cooperating untrusted relays is not effective compared to the case where each untrusted relay is trying to intercept the transmitted message individually. Fifth and last, we investigate the physical layer security performance over Rayleigh fading channels in the presence of impulsive noise, as encountered, for instance, in smart grid environments. For this scheme, secrecy performance metrics were considered with and without destination assisted jamming at the eavesdropper’s side. From the obtained results, it is verified that the SOP, without destination assisted jamming, is flooring at high signal-to-noise-ratio values and that it can be significantly improved with the use of jamming
    corecore