44 research outputs found

    Receiver algorithms that enable multi-mode baseband terminals

    Get PDF

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    High Capacity CDMA and Collaborative Techniques

    Get PDF
    The thesis investigates new approaches to increase the user capacity and improve the error performance of Code Division Multiple Access (CDMA) by employing adaptive interference cancellation and collaborative spreading and space diversity techniques. Collaborative Coding Multiple Access (CCMA) is also investigated as a separate technique and combined with CDMA. The advantages and shortcomings of CDMA and CCMA are analysed and new techniques for both the uplink and downlink are proposed and evaluated. Multiple access interference (MAI) problem in the uplink of CDMA is investigated first. The practical issues of multiuser detection (MUD) techniques are reviewed and a novel blind adaptive approach to interference cancellation (IC) is proposed. It exploits the constant modulus (CM) property of digital signals to blindly suppress interference during the despreading process and obtain amplitude estimation with minimum mean squared error for use in cancellation stages. Two new blind adaptive receiver designs employing successive and parallel interference cancellation architectures using the CM algorithm (CMA) referred to as ‘CMA-SIC’ and ‘BA-PIC’, respectively, are presented. These techniques have shown to offer near single user performance for large number of users. It is shown to increase the user capacity by approximately two fold compared with conventional IC receivers. The spectral efficiency analysis of the techniques based on output signal-to interference-and-noise ratio (SINR) also shows significant gain in data rate. Furthermore, an effective and low complexity blind adaptive subcarrier combining (BASC) technique using a simple gradient descent based algorithm is proposed for Multicarrier-CDMA. It suppresses MAI without any knowledge of channel amplitudes and allows large number of users compared with equal gain and maximum ratio combining techniques normally used in practice. New user collaborative schemes are proposed and analysed theoretically and by simulations in different channel conditions to achieve spatial diversity for uplink of CCMA and CDMA. First, a simple transmitter diversity and its equivalent user collaborative diversity techniques for CCMA are designed and analysed. Next, a new user collaborative scheme with successive interference cancellation for uplink of CDMA referred to as collaborative SIC (C-SIC) is investigated to reduce MAI and achieve improved diversity. To further improve the performance of C-SIC under high system loading conditions, Collaborative Blind Adaptive SIC (C-BASIC) scheme is proposed. It is shown to minimize the residual MAI, leading to improved user capacity and a more robust system. It is known that collaborative diversity schemes incur loss in throughput due to the need of orthogonal time/frequency slots for relaying source’s data. To address this problem, finally a novel near-unity-rate scheme also referred to as bandwidth efficient collaborative diversity (BECD) is proposed and evaluated for CDMA. Under this scheme, pairs of users share a single spreading sequence to exchange and forward their data employing a simple superposition or space-time encoding methods. At the receiver collaborative joint detection is performed to separate each paired users’ data. It is shown that the scheme can achieve full diversity gain at no extra bandwidth as inter-user channel SNR becomes high. A novel approach of ‘User Collaboration’ is introduced to increase the user capacity of CDMA for both the downlink and uplink. First, collaborative group spreading technique for the downlink of overloaded CDMA system is introduced. It allows the sharing of the same single spreading sequence for more than one user belonging to the same group. This technique is referred to as Collaborative Spreading CDMA downlink (CS-CDMA-DL). In this technique T-user collaborative coding is used for each group to form a composite codeword signal of the users and then a single orthogonal sequence is used for the group. At each user’s receiver, decoding of composite codeword is carried out to extract the user’s own information while maintaining a high SINR performance. To improve the bit error performance of CS-CDMA-DL in Rayleigh fading conditions, Collaborative Space-time Spreading (C-STS) technique is proposed by combining the collaborative coding multiple access and space-time coding principles. A new scheme for uplink of CDMA using the ‘User Collaboration’ approach, referred to as CS-CDMA-UL is presented next. When users’ channels are independent (uncorrelated), significantly higher user capacity can be achieved by grouping multiple users to share the same spreading sequence and performing MUD on per group basis followed by a low complexity ML decoding at the receiver. This approach has shown to support much higher number of users than the available sequences while also maintaining the low receiver complexity. For improved performance under highly correlated channel conditions, T-user collaborative coding is also investigated within the CS-CDMA-UL system

    Study of spread spectrum multiple access systems for satellite communications with overlay on current services

    Get PDF
    The feasibility of using spread spectrum techniques to provide a low-cost multiple access system for a very large number of low data terminals was investigated. Two applications of spread spectrum technology to very small aperture terminal (VSAT) satellite communication networks are presented. Two spread spectrum multiple access systems which use a form of noncoherent M-ary FSK (MFSK) as the primary modulation are described and the throughput analyzed. The analysis considers such factors as satellite power constraints and adjacent satellite interference. Also considered is the effect of on-board processing on the multiple access efficiency and the feasibility of overlaying low data rate spread spectrum signals on existing satellite traffic as a form of frequency reuse is investigated. The use of chirp is examined for spread spectrum communications. In a chirp communication system, each data bit is converted into one or more up or down sweeps of frequency, which spread the RF energy across a broad range of frequencies. Several different forms of chirp communication systems are considered, and a multiple-chirp coded system is proposed for overlay service. The mutual interference problem is examined in detail and a performance analysis undertaken for the case of a chirp data channel overlaid on a video channel

    Physical Layer Techniques for Wireless Communication Systems

    Get PDF
    The increasing diffusion of mobile devices requiring, everywhere and every time, reliable connections able to support the more common applications, induced in the last years the deployment of telecommunication networks based on technologies capable to respond effectively to the ever-increasing market demand, still a long way off from saturation level. Multicarrier transmission techniques employed in standards for local networks (Wi-Fi) and metropolitan networks (WiMAX) and for many years hot research topic, have been definitely adopted beginning from the fourth generation of cellular systems (LTE). The adoption of multicarrier signaling techniques if on one hand has brought significant advantages to counteract the detrimental effects in environments with particularly harsh propagation channel, on the other hand, has imposed very strict requirements on sensitivity to recovery errors of the carrier frequency offset (CFO) due to the resulting impact on correct signal detection. The main focus of the thesis falls in this area, investigating some aspects relating to synchronization procedures for system based on multicarrier signaling. Particular reference will be made to a network entry procedure for LTE networks and to CFO recovery for OFDM, fltered multitone modulation and direct conversion receivers. Other contributions pertaining to physical layer issues for communication systems, both radio and over acoustic carrier, conclude the thesis

    Improved decoder metrics for DS-CDMA in practical 3G systems

    Get PDF
    While 4G mobile networks have been deployed since 2008. In several of the more developed markets, 3G mobile networks are still growing with 3G having the largest market -in terms of number of users- by 2019. 3G networks are based on Direct- Sequence Code-Division Multiple-Access (DS-CDMA). DS-CDMA suffers mainly from the Multiple Access Interference (MAI) and fading. Multi-User Detectors (MUDs) and Error Correcting Codes (ECCs) are the primary means to combat MAI and fading. MUDs, however, suffer from high complexity, including most of sub-optimal algorithms. Hence, most commercial implementations still use conventional single-user matched filter detectors. This thesis proposes improved channel decoder metrics for enhancing uplink performance in 3G systems. The basic idea is to model the MAI as conditionally Gaussian, instead of Gaussian, conditioned on the users’ cross-correlations and/or the channel fading coefficients. The conditioning implies a time-dependent variance that provides enhanced reliability estimates at the decoder inputs. We derive improved log-likelihood ratios (ILLRs) for bit- and chip- asynchronous multipath fading channels. We show that while utilizing knowledge of all users’ code sequences for the ILLR metric is very complicated in chip-asynchronous reception, a simplified expression relying on truncated group delay results in negligible performance loss. We also derive an expression for the error probability using the standard Gaussian approximation for asynchronous channels for the widely used raised cosine pule shaping. Our study framework considers practical 3G systems, with finite interleaving, correlated multipath fading channel models, practical pulse shaping, and system parameters obtained from CDMA2000 standard. Our results show that for the fully practical cellular uplink channel, the performance advantage due to ILLRs is significant and approaches 3 dB

    Error resilient H.264 coded video transmission over wireless channels

    Get PDF
    The H.264/AVC recommendation was first published in 2003 and builds on the concepts of earlier standards such as MPEG-2 and MPEG-4. The H.264 recommendation represents an evolution of the existing video coding standards and was developed in response to the growing need for higher compression. Even though H.264 provides for greater compression, H.264 compressed video streams are very prone to channel errors in mobile wireless fading channels such as 3G due to high error rates experienced. Common video compression techniques include motion compensation, prediction methods, transformation, quantization and entropy coding, which are the common elements of a hybrid video codecs. The ITU-T recommendation H.264 introduces several new error resilience tools, as well as several new features such as Intra Prediction and Deblocking Filter. The channel model used for the testing was the Rayleigh Fading channel with the noise component simulated as Additive White Gaussian Noise (AWGN) using QPSK as the modulation technique. The channel was used over several Eb/N0 values to provide similar bit error rates as those found in the literature. Though further research needs to be conducted, results have shown that when using the H.264 error resilience tools in protecting encoded bitstreams to minor channel errors improvement in the decoded video quality can be observed. The tools did not perform as well with mild and severe channel errors significant as the resultant bitstream was too corrupted. From this, further research in channel coding techniques is needed to determine if the bitstream can be protected from these sorts of error rate

    Engineering evaluations and studies. Volume 3: Exhibit C

    Get PDF
    High rate multiplexes asymmetry and jitter, data-dependent amplitude variations, and transition density are discussed
    corecore