79 research outputs found

    A novel multipurpose watermarking scheme capable of protecting and authenticating images with tamper detection and localisation abilities

    Get PDF
    Technologies that fall under the umbrella of Industry 4.0 can be classified into one of its four significant components: cyber-physical systems, the internet of things (IoT), on-demand availability of computer system resources, and cognitive computing. The success of this industrial revolution lies in how well these components can communicate with each other, and work together in finding the most optimised solution for an assigned task. It is achieved by sharing data collected from a network of sensors. This data is communicated via images, videos, and a variety of other signals, attracting unwanted attention of hackers. The protection of such data is therefore pivotal, as is maintaining its integrity. To this end, this paper proposes a novel image watermarking scheme with potential applications in Industry 4.0. The strategy presented is multipurpose; one such purpose is authenticating the transmitted image, another is curtailing the illegal distribution of the image by providing copyright protection. To this end, two new watermarking methods are introduced, one of which is for embedding the robust watermark, and the other is related to the fragile watermark. The robust watermark's embedding is achieved in the frequency domain, wherein the frequency coefficients are selected using a novel mean-based coefficient selection procedure. Subsequently, the selected coefficients are manipulated in equal proportion to embed the robust watermark. The fragile watermark's embedding is achieved in the spatial domain, wherein self-generated fragile watermark(s) is embedded by directly altering the pixel bits of the host image. The effective combination of two domains results in a hybrid scheme and attains the vital balance between the watermarking requirements of imperceptibility, security and capacity. Moreover, in the case of tampering, the proposed scheme not only authenticates and provides copyright protection to images but can also detect tampering and localise the tampered regions. An extensive evaluation of the proposed scheme on typical images has proven its superiority over existing state-of-the-art methods

    A Study in Image Watermarking Schemes using Neural Networks

    Full text link
    The digital watermarking technique, an effective way to protect image, has become the research focus on neural network. The purpose of this paper is to provide a brief study on broad theories and discuss the different types of neural networks for image watermarking. Most of the research interest image watermarking based on neural network in discrete wavelet transform or discrete cosine transform. Generally image watermarking based on neural network to solve the problem on to reduce the error, improve the rate of the learning, achieves goods imperceptibility and robustness. It will be useful for researches to implement effective image watermarking by using neural network

    Color Image Watermarking Based on Radon Transform and Jordan Decomposition

    Get PDF
    Digital watermarking has been widely used for ownership identification and copyright protection. In this chapter, a color image watermarking method based on Radon transform (RT) and Jordan decomposition (JD) is proposed. Initially, the host color image is converted into L*a*b* color space. Then, the b* channel is selected and it is divided into 16 × 16 non-overlapping blocks. RT is applied to each of these blocks. JD is applied to the selected RT coefficients of each block represented in m × n matrix. Watermark data is embedded in the coefficients of the similarity transform matrix obtained from JD using a new quantization equation. Experimental results indicate that the proposed method is highly robust against various attacks such as noise addition, cropping, filtering, blurring, rotation, JPEG compression etc. In addition, it provides high quality watermarked images. Moreover, it shows superior performance than the state-of-the-art methods reported recently in terms of imperceptibility and robustness

    Entropy Based Robust Watermarking Algorithm

    Get PDF
    Tänu aina kasvavale multimeedia andmeedastus mahtudele Internetis, on esile kerkinud mured turvalisusest ja piraatlusest. Digitaalse meedia paljundamise ja muutmise maht on loonud vajaduse digitaalse meedia vesimärgistamise järgi. Selles töös on tutvustatud vastupidavaid vesimärkide lisamise algoritme, mis lisavad vesimärgid madala entroopiaga pildi osadesse. Välja pakutud algoritmides jagatakse algne pilt blokkidesse ning arvutatakse iga bloki entroopia. Kõikide blokkide keskmine entroopia väärtus valitakse künniseks, mille järgi otsustatakse, millistesse blokkidesse vesimärk lisada. Kõik blokid, mille entroopia on väiksem kui künnis, viiakse signaali sageduse kujule kasutades Discrete Wavelet Transform algoritmi. Madala sagedusega sagedusvahemikule rakendatakse Chirp Z-Transform algoritmi ja saadud tulemusele LU-dekompositsiooni või QR-dekompositsiooni. Singular Value Decomposition meetodi rakendamisel diagonaalmaatriksile, mis saadi eelmisest sammust, saadakse iga bloki vastav väärtus. Vesimärk lisatakse pildile, liites iga bloki arvutatud väärtusele vesimärgi Singular Value Decomposition meetodi tulemused. Kirjeldatud algoritme testiti ning võrreldi teiste tavapärast ning uudsete vesimärkide lisamise tehnoloogiatega. Kvantitatiivsed ja kvalitatiivsed eksperimendid näitavad, et välja pakutud meetodid on tajumatud ning vastupidavad signaali töötlemise rünnakutele.With growth of digital media distributed over the Internet, concerns about security and piracy have emerged. The amount of digital media reproduction and tampering has brought a need for content watermarking. In this work, multiple robust watermarking algorithms are introduced. They embed watermark image into singular values of host image’s blocks with low entropy values. In proposed algorithms, host image is divided into blocks, and the entropy of each block is calculated. The average of all entropies indicates the chosen threshold value for selecting the blocks in which watermark image should be embedded. All blocks with entropy lower than the calculated threshold are decomposed into frequency subbands using discrete wavelet transform (DWT). Subsequently chirp z-transform (CZT) is applied to the low-frequency subband followed by an appropriate matrix decomposition such as lower and upper decomposition (LUD) or orthogonal-triangular decomposition (QR decomposition). By applying singular value decomposition (SVD) to diagonal matrices obtained by the aforementioned matrix decompositions, the singular values of each block are calculated. Watermark image is embedded by adding singular values of the watermark image to singular values of the low entropy blocks. Proposed algorithms are tested on many host and watermark images, and they are compared with conventional and other state-of-the-art watermarking techniques. The quantitative and qualitative experimental results are indicating that the proposed algorithms are imperceptible and robust against many signal processing attacks

    State-of-the-art application of artificial neural network in digital watermarking and the way forward

    Get PDF
    Several high-ranking watermarking schemes using neural networks have been proposed in order to make the watermark stronger to resist attacks.The ability of Artificial Neural Network, ANN to learn, do mapping, classify, and adapt has increased the interest of researcher in application of different types ANN in watermarking.In this paper, ANN based approached have been categorized based on their application to different components of watermarking such as; capacity estimate, watermark embedding, recovery of watermark and error rate detection. We propose a new component of water marking, Secure Region, SR in which, ANN can be used to identify such region within the estimated capacity. Hence an attack-proof watermarking system can be achieved

    Towards Blind Watermarking: Combining Invertible and Non-invertible Mechanisms

    Full text link
    Blind watermarking provides powerful evidence for copyright protection, image authentication, and tampering identification. However, it remains a challenge to design a watermarking model with high imperceptibility and robustness against strong noise attacks. To resolve this issue, we present a framework Combining the Invertible and Non-invertible (CIN) mechanisms. The CIN is composed of the invertible part to achieve high imperceptibility and the non-invertible part to strengthen the robustness against strong noise attacks. For the invertible part, we develop a diffusion and extraction module (DEM) and a fusion and split module (FSM) to embed and extract watermarks symmetrically in an invertible way. For the non-invertible part, we introduce a non-invertible attention-based module (NIAM) and the noise-specific selection module (NSM) to solve the asymmetric extraction under a strong noise attack. Extensive experiments demonstrate that our framework outperforms the current state-of-the-art methods of imperceptibility and robustness significantly. Our framework can achieve an average of 99.99% accuracy and 67.66 dB PSNR under noise-free conditions, while 96.64% and 39.28 dB combined strong noise attacks. The code will be available in https://github.com/rmpku/CIN.Comment: 9 pages, 9 figures, 5 table
    corecore