4 research outputs found

    Application and Theory of Multimedia Signal Processing Using Machine Learning or Advanced Methods

    Get PDF
    This Special Issue is a book composed by collecting documents published through peer review on the research of various advanced technologies related to applications and theories of signal processing for multimedia systems using ML or advanced methods. Multimedia signals include image, video, audio, character recognition and optimization of communication channels for networks. The specific contents included in this book are data hiding, encryption, object detection, image classification, and character recognition. Academics and colleagues who are interested in these topics will find it interesting to read

    A blind recovery technique with integer wavelet transforms in image watermarking

    Get PDF
    The development of internet technology has simplified the sharing and modification of digital image information. The aim of this study is to propose a new blind recovery technique based on integer wavelets transform (BRIWT) by utilizing their image content. The LSB adjustment technique on the integer wavelet transform is used to embed recovery data into the two least significant bits (LSB) of the image content. Authentication bits are embedded into the current locations of the LSB of the image content, while the recovery information is embedded into different block locations based on the proposed block mapping. The embedded recovery data is securely placed at random locations within the two LSBs using a secret key. A three-layer embedding of authentication bits is used to validate the integrity of the image contents, achieving high precision and accuracy. Tamper localization accuracy is employed to identify recovery bits from the image content. This research also investigates the image inpainting method to enhance recovery from tampered images. The proposed image inpainting is performed by identifying non-tampered pixels in the surrounding tamper localization. The results demonstrate that the proposed scheme can produce highly watermarked images with imperceptibility, with an average SSIM value of 0.9978 and a PSNR value of 46.20 dB. The proposed scheme significantly improves the accuracy of tamper localization, with a precision of 0.9943 and an accuracy of 0.9971. The proposed recovery technique using integer wavelet transforms achieves high-quality blind recovery with an SSIM value of 0.9934 under a tampering rate of 10%. The findings of this study reveal that the proposed scheme improves the quality of blind recovery by 14.2 % under a tampering rate of 80 %

    Fragile watermarking for image authentication using dyadic walsh ordering

    Get PDF
    A digital image is subjected to the most manipulation. This is driven by the easy manipulating process through image editing software which is growing rapidly. These problems can be solved through the watermarking model as an active authentication system for the image. One of the most popular methods is Singular Value Decomposition (SVD) which has good imperceptibility and detection capabilities. Nevertheless, SVD has high complexity and can only utilize one singular matrix S, and ignore two orthogonal matrices. This paper proposes the use of the Walsh matrix with dyadic ordering to generate a new S matrix without the orthogonal matrices. The experimental results showed that the proposed method was able to reduce computational time by 22% and 13% compared to the SVD-based method and similar methods based on the Hadamard matrix respectively. This research can be used as a reference to speed up the computing time of the watermarking methods without compromising the level of imperceptibility and authentication
    corecore