1,208 research outputs found

    Self-duality of bounded monotone boolean functions and related problems

    Get PDF
    AbstractIn this paper we examine the problem of determining the self-duality of a monotone boolean function in disjunctive normal form (DNF). We show that the self-duality of monotone boolean functions with n disjuncts such that each disjunct has at most k literals can be determined in O(2k2k2n) time. This implies an O(n2logn) algorithm for determining the self-duality of logn-DNF functions. We also consider the version where any two disjuncts have at most c literals in common. For this case we give an O(n4(c+1)) algorithm for determining self-duality

    Achieving New Upper Bounds for the Hypergraph Duality Problem through Logic

    Get PDF
    The hypergraph duality problem DUAL is defined as follows: given two simple hypergraphs G\mathcal{G} and H\mathcal{H}, decide whether H\mathcal{H} consists precisely of all minimal transversals of G\mathcal{G} (in which case we say that G\mathcal{G} is the dual of H\mathcal{H}). This problem is equivalent to deciding whether two given non-redundant monotone DNFs are dual. It is known that non-DUAL, the complementary problem to DUAL, is in GC(log2n,PTIME)\mathrm{GC}(\log^2 n,\mathrm{PTIME}), where GC(f(n),C)\mathrm{GC}(f(n),\mathcal{C}) denotes the complexity class of all problems that after a nondeterministic guess of O(f(n))O(f(n)) bits can be decided (checked) within complexity class C\mathcal{C}. It was conjectured that non-DUAL is in GC(log2n,LOGSPACE)\mathrm{GC}(\log^2 n,\mathrm{LOGSPACE}). In this paper we prove this conjecture and actually place the non-DUAL problem into the complexity class GC(log2n,TC0)\mathrm{GC}(\log^2 n,\mathrm{TC}^0) which is a subclass of GC(log2n,LOGSPACE)\mathrm{GC}(\log^2 n,\mathrm{LOGSPACE}). We here refer to the logtime-uniform version of TC0\mathrm{TC}^0, which corresponds to FO(COUNT)\mathrm{FO(COUNT)}, i.e., first order logic augmented by counting quantifiers. We achieve the latter bound in two steps. First, based on existing problem decomposition methods, we develop a new nondeterministic algorithm for non-DUAL that requires to guess O(log2n)O(\log^2 n) bits. We then proceed by a logical analysis of this algorithm, allowing us to formulate its deterministic part in FO(COUNT)\mathrm{FO(COUNT)}. From this result, by the well known inclusion TC0LOGSPACE\mathrm{TC}^0\subseteq\mathrm{LOGSPACE}, it follows that DUAL belongs also to DSPACE[log2n]\mathrm{DSPACE}[\log^2 n]. Finally, by exploiting the principles on which the proposed nondeterministic algorithm is based, we devise a deterministic algorithm that, given two hypergraphs G\mathcal{G} and H\mathcal{H}, computes in quadratic logspace a transversal of G\mathcal{G} missing in H\mathcal{H}.Comment: Restructured the presentation in order to be the extended version of a paper that will shortly appear in SIAM Journal on Computin

    Noise Sensitivity of Boolean Functions and Applications to Percolation

    Get PDF
    It is shown that a large class of events in a product probability space are highly sensitive to noise, in the sense that with high probability, the configuration with an arbitrary small percent of random errors gives almost no prediction whether the event occurs. On the other hand, weighted majority functions are shown to be noise-stable. Several necessary and sufficient conditions for noise sensitivity and stability are given. Consider, for example, bond percolation on an n+1n+1 by nn grid. A configuration is a function that assigns to every edge the value 0 or 1. Let ω\omega be a random configuration, selected according to the uniform measure. A crossing is a path that joins the left and right sides of the rectangle, and consists entirely of edges ee with ω(e)=1\omega(e)=1. By duality, the probability for having a crossing is 1/2. Fix an ϵ(0,1)\epsilon\in(0,1). For each edge ee, let ω(e)=ω(e)\omega'(e)=\omega(e) with probability 1ϵ1-\epsilon, and ω(e)=1ω(e)\omega'(e)=1-\omega(e) with probability ϵ\epsilon, independently of the other edges. Let p(τ)p(\tau) be the probability for having a crossing in ω\omega, conditioned on ω=τ\omega'=\tau. Then for all nn sufficiently large, P{τ:p(τ)1/2>ϵ}<ϵP\{\tau : |p(\tau)-1/2|>\epsilon\}<\epsilon.Comment: To appear in Inst. Hautes Etudes Sci. Publ. Mat

    Hilbert C*-modules and related subjects - a guided reference overview I

    Full text link
    The overview contains 450 references of books, chapters of monographs, papers, preprints and Ph.~D.~thesises which are concerned with the theory and/or various applications of Hilbert C*-modules. To show a way through this amount of literature a four pages guide is added clustering sources around major research problems and research fields, and giving information on the historical background. Two smaller separate parts list references treating Hilbert modules over Hilbert*-algebras and Hilbert modules over (non-self-adjoint) operator algebras. Any additions, corrections and forthcoming information are welcome.Comment: LaTeX 2.09, 23 page

    First-order limits, an analytical perspective

    Full text link
    In this paper we present a novel approach to graph (and structural) limits based on model theory and analysis. The role of Stone and Gelfand dualities is displayed prominently and leads to a general theory, which we believe is naturally emerging. This approach covers all the particular examples of structural convergence and it put the whole in new context. As an application, it leads to new intermediate examples of structural convergence and to a "grand conjecture" dealing with sparse graphs. We survey the recent developments

    Bohrification of operator algebras and quantum logic

    Get PDF
    Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hilbert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by their nondistributivity and by various other problems. We show that a possible resolution of these difficulties, suggested by the ideas of Bohr, emerges if instead of single projections one considers elementary propositions to be families of projections indexed by a partially ordered set C(A) of appropriate commutative subalgebras of A. In fact, to achieve both maximal generality and ease of use within topos theory, we assume that A is a so-called Rickart C*-algebra and that C(A) consists of all unital commutative Rickart C*-subalgebras of A. Such families of projections form a Heyting algebra in a natural way, so that the associated propositional logic is intuitionistic: distributivity is recovered at the expense of the law of the excluded middle. Subsequently, generalizing an earlier computation for n-by-n matrices, we prove that the Heyting algebra thus associated to A arises as a basis for the internal Gelfand spectrum (in the sense of Banaschewski-Mulvey) of the "Bohrification" of A, which is a commutative Rickart C*-algebra in the topos of functors from C(A) to the category of sets. We explain the relationship of this construction to partial Boolean algebras and Bruns-Lakser completions. Finally, we establish a connection between probability measure on the lattice of projections on a Hilbert space H and probability valuations on the internal Gelfand spectrum of A for A = B(H).Comment: 31 page
    corecore