27,976 research outputs found

    Dichotomy Results for Fixed-Point Existence Problems for Boolean Dynamical Systems

    Full text link
    A complete classification of the computational complexity of the fixed-point existence problem for boolean dynamical systems, i.e., finite discrete dynamical systems over the domain {0, 1}, is presented. For function classes F and graph classes G, an (F, G)-system is a boolean dynamical system such that all local transition functions lie in F and the underlying graph lies in G. Let F be a class of boolean functions which is closed under composition and let G be a class of graphs which is closed under taking minors. The following dichotomy theorems are shown: (1) If F contains the self-dual functions and G contains the planar graphs then the fixed-point existence problem for (F, G)-systems with local transition function given by truth-tables is NP-complete; otherwise, it is decidable in polynomial time. (2) If F contains the self-dual functions and G contains the graphs having vertex covers of size one then the fixed-point existence problem for (F, G)-systems with local transition function given by formulas or circuits is NP-complete; otherwise, it is decidable in polynomial time.Comment: 17 pages; this version corrects an error/typo in the 2008/01/24 versio

    Counting self-dual monotone Boolean functions

    Full text link
    Let DnD_n denote the set of monotone Boolean functions with nn variables. Elements of DnD_n can be represented as strings of bits of length 2n2^n. Two elements of D0D_0 are represented as 0 and 1 and any element gDng\in D_n, with n>0n>0, is represented as a concatenation g0g1g_0\cdot g_1, where g0,g1Dn1g_0, g_1\in D_{n-1} and g0g1g_0\le g_1. For each xDnx\in D_n, we have dual xDnx^*\in D_n which is obtained by reversing and negating all bits. An element xDnx\in D_n is self-dual if x=xx=x^*. Let λn\lambda_n denote the cardinality of the set of all self-dual monotone Boolean functions of nn variables. The value λn\lambda_n is also known as the nn-th Hosten-Morris number. In this paper, we derive several algorithms for counting self-dual monotone Boolean functions and confirm the known result that λ9\lambda_9 equals 423,295,099,074,735,261,880

    Dichotomy Results for Fixed Point Counting in Boolean Dynamical Systems

    Full text link
    We present dichotomy theorems regarding the computational complexity of counting fixed points in boolean (discrete) dynamical systems, i.e., finite discrete dynamical systems over the domain {0,1}. For a class F of boolean functions and a class G of graphs, an (F,G)-system is a boolean dynamical system with local transitions functions lying in F and graphs in G. We show that, if local transition functions are given by lookup tables, then the following complexity classification holds: Let F be a class of boolean functions closed under superposition and let G be a graph class closed under taking minors. If F contains all min-functions, all max-functions, or all self-dual and monotone functions, and G contains all planar graphs, then it is #P-complete to compute the number of fixed points in an (F,G)-system; otherwise it is computable in polynomial time. We also prove a dichotomy theorem for the case that local transition functions are given by formulas (over logical bases). This theorem has a significantly more complicated structure than the theorem for lookup tables. A corresponding theorem for boolean circuits coincides with the theorem for formulas.Comment: 16 pages, extended abstract presented at 10th Italian Conference on Theoretical Computer Science (ICTCS'2007

    Metrical properties of the set of bent functions in view of duality

    Get PDF
    In the paper, we give a review of metrical properties of the entire set of bent functions and its significant subclasses of self-dual and anti-self-dual bent functions. We present results for iterative construction of bent functions in n + 2 variables based on the concatenation of four bent functions and consider related open problem proposed by one of the authors. Criterion of self-duality of such functions is discussed. It is explored that the pair of sets of bent functions and affine functions as well as a pair of sets of self-dual and anti-self-dual bent functions in n > 4 variables is a pair of mutually maximally distant sets that implies metrical duality. Groups of automorphisms of the sets of bent functions and (anti-)self-dual bent functions are discussed. The solution to the problem of preserving bentness and the Hamming distance between bent function and its dual within automorphisms of the set of all Boolean functions in n variables is considered

    The group of automorphisms of the set of self-dual bent functions

    Get PDF
    A bent function is a Boolean function in even number of variables which is on the maximal Hamming distance from the set of affine Boolean functions. It is called self-dual if it coincides with its dual. It is called anti-self-dual if it is equal to the negation of its dual. A mapping of the set of all Boolean functions in n variables to itself is said to be isometric if it preserves the Hamming distance. In this paper we study isometric mappings which preserve self-duality and anti-self-duality of a Boolean bent function. The complete characterization of these mappings is obtained for n>2. Based on this result, the set of isometric mappings which preserve the Rayleigh quotient of the Sylvester Hadamard matrix, is characterized. The Rayleigh quotient measures the Hamming distnace between bent function and its dual, so as a corollary, all isometric mappings which preserve bentness and the Hamming distance between bent function and its dual are described

    Spectral Orbits and Peak-to-Average Power Ratio of Boolean Functions with respect to the {I,H,N}^n Transform

    Full text link
    We enumerate the inequivalent self-dual additive codes over GF(4) of blocklength n, thereby extending the sequence A090899 in The On-Line Encyclopedia of Integer Sequences from n = 9 to n = 12. These codes have a well-known interpretation as quantum codes. They can also be represented by graphs, where a simple graph operation generates the orbits of equivalent codes. We highlight the regularity and structure of some graphs that correspond to codes with high distance. The codes can also be interpreted as quadratic Boolean functions, where inequivalence takes on a spectral meaning. In this context we define PAR_IHN, peak-to-average power ratio with respect to the {I,H,N}^n transform set. We prove that PAR_IHN of a Boolean function is equivalent to the the size of the maximum independent set over the associated orbit of graphs. Finally we propose a construction technique to generate Boolean functions with low PAR_IHN and algebraic degree higher than 2.Comment: Presented at Sequences and Their Applications, SETA'04, Seoul, South Korea, October 2004. 17 pages, 10 figure

    On Self-Dual Quantum Codes, Graphs, and Boolean Functions

    Get PDF
    A short introduction to quantum error correction is given, and it is shown that zero-dimensional quantum codes can be represented as self-dual additive codes over GF(4) and also as graphs. We show that graphs representing several such codes with high minimum distance can be described as nested regular graphs having minimum regular vertex degree and containing long cycles. Two graphs correspond to equivalent quantum codes if they are related by a sequence of local complementations. We use this operation to generate orbits of graphs, and thus classify all inequivalent self-dual additive codes over GF(4) of length up to 12, where previously only all codes of length up to 9 were known. We show that these codes can be interpreted as quadratic Boolean functions, and we define non-quadratic quantum codes, corresponding to Boolean functions of higher degree. We look at various cryptographic properties of Boolean functions, in particular the propagation criteria. The new aperiodic propagation criterion (APC) and the APC distance are then defined. We show that the distance of a zero-dimensional quantum code is equal to the APC distance of the corresponding Boolean function. Orbits of Boolean functions with respect to the {I,H,N}^n transform set are generated. We also study the peak-to-average power ratio with respect to the {I,H,N}^n transform set (PAR_IHN), and prove that PAR_IHN of a quadratic Boolean function is related to the size of the maximum independent set over the corresponding orbit of graphs. A construction technique for non-quadratic Boolean functions with low PAR_IHN is proposed. It is finally shown that both PAR_IHN and APC distance can be interpreted as partial entanglement measures.Comment: Master's thesis. 105 pages, 33 figure

    Decompositions of Boolean functions and hypergraphs

    Get PDF
    Boolean functions are closely reltated to hypergraphs. In fact, Ibaraki and Kameta (1993) sutudied relations between coteries (intersecting simple hypergraphs) and positive Boolean functions. In this paper, we shall show that the set of all simple hypergraphs is lattice-isomorphic to the set of all positive Boolean functions. A decompositions of a given function into a conjunction of self-dual functions were studied by Ibaraki, Kameta (1993) and Bioch, Ibaraki (1995). For a given dual-minor function, using a certain corresponding hypergraph, we shall give the general condition for the decomposition

    Dichotomy Results for Fixed Point Counting in Boolean Dynamical Systems

    Get PDF
    We present dichotomy theorems regarding the computational complexity of counting fixed points in boolean (discrete) dynamical systems, i.e., finite discrete dynamical systems over the domain {0, 1}. For a class F of boolean functions and a class G of graphs, an (F, G)-system is a boolean dynamical system with local transitions functions lying in F and graphs in G. We show that, if local transition functions are given by lookup tables, then the following complexity classification holds: Let F be a class of boolean functions closed under superposition and let G be a graph class closed under taking minors. If F contains all min-functions, all max-functions, or all self-dual and monotone functions, and G contains all planar graphs, then it is #Pcomplete to compute the number of fixed points in an (F, G)-system; otherwise it is computable in polynomial time. We also prove a dichotomy theorem for the case that local transition functions are given by formulas (over logical bases). This theorem has a significantly more complicated structure than the theorem for lookup tables. A corresponding theorem for boolean circuits coincides with the theorem for formulas
    corecore