446 research outputs found

    Local quadratic convergence of polynomial-time interior-point methods for conic optimization problems

    Get PDF
    In this paper, we establish a local quadratic convergence of polynomial-time interior-point methods for general conic optimization problems. The main structural property used in our analysis is the logarithmic homogeneity of self-concordant barrier functions. We propose new path-following predictor-corrector schemes which work only in the dual space. They are based on an easily computable gradient proximity measure, which ensures an automatic transformation of the global linear rate of convergence to the local quadratic one under some mild assumptions. Our step-size procedure for the predictor step is related to the maximum step size (the one that takes us to the boundary). It appears that in order to obtain local superlinear convergence, we need to tighten the neighborhood of the central path proportionally to the current duality gapconic optimization problem, worst-case complexity analysis, self-concordant barriers, polynomial-time methods, predictor-corrector methods, local quadratic convergence

    A Schwarz lemma for K\"ahler affine metrics and the canonical potential of a proper convex cone

    Full text link
    This is an account of some aspects of the geometry of K\"ahler affine metrics based on considering them as smooth metric measure spaces and applying the comparison geometry of Bakry-Emery Ricci tensors. Such techniques yield a version for K\"ahler affine metrics of Yau's Schwarz lemma for volume forms. By a theorem of Cheng and Yau there is a canonical K\"ahler affine Einstein metric on a proper convex domain, and the Schwarz lemma gives a direct proof of its uniqueness up to homothety. The potential for this metric is a function canonically associated to the cone, characterized by the property that its level sets are hyperbolic affine spheres foliating the cone. It is shown that for an nn-dimensional cone a rescaling of the canonical potential is an nn-normal barrier function in the sense of interior point methods for conic programming. It is explained also how to construct from the canonical potential Monge-Amp\`ere metrics of both Riemannian and Lorentzian signatures, and a mean curvature zero conical Lagrangian submanifold of the flat para-K\"ahler space.Comment: Minor corrections. References adde

    Interior-point algorithms for convex optimization based on primal-dual metrics

    Full text link
    We propose and analyse primal-dual interior-point algorithms for convex optimization problems in conic form. The families of algorithms we analyse are so-called short-step algorithms and they match the current best iteration complexity bounds for primal-dual symmetric interior-point algorithm of Nesterov and Todd, for symmetric cone programming problems with given self-scaled barriers. Our results apply to any self-concordant barrier for any convex cone. We also prove that certain specializations of our algorithms to hyperbolic cone programming problems (which lie strictly between symmetric cone programming and general convex optimization problems in terms of generality) can take advantage of the favourable special structure of hyperbolic barriers. We make new connections to Riemannian geometry, integrals over operator spaces, Gaussian quadrature, and strengthen the connection of our algorithms to quasi-Newton updates and hence first-order methods in general.Comment: 36 page

    Interior-point methods on manifolds: theory and applications

    Full text link
    Interior-point methods offer a highly versatile framework for convex optimization that is effective in theory and practice. A key notion in their theory is that of a self-concordant barrier. We give a suitable generalization of self-concordance to Riemannian manifolds and show that it gives the same structural results and guarantees as in the Euclidean setting, in particular local quadratic convergence of Newton's method. We analyze a path-following method for optimizing compatible objectives over a convex domain for which one has a self-concordant barrier, and obtain the standard complexity guarantees as in the Euclidean setting. We provide general constructions of barriers, and show that on the space of positive-definite matrices and other symmetric spaces, the squared distance to a point is self-concordant. To demonstrate the versatility of our framework, we give algorithms with state-of-the-art complexity guarantees for the general class of scaling and non-commutative optimization problems, which have been of much recent interest, and we provide the first algorithms for efficiently finding high-precision solutions for computing minimal enclosing balls and geometric medians in nonpositive curvature.Comment: 85 pages. v2: Merged with independent work arXiv:2212.10981 by Hiroshi Hira
    • …
    corecore