570 research outputs found

    Latent Degradation Representation Constraint for Single Image Deraining

    Full text link
    Since rain streaks show a variety of shapes and directions, learning the degradation representation is extremely challenging for single image deraining. Existing methods are mainly targeted at designing complicated modules to implicitly learn latent degradation representation from coupled rainy images. This way, it is hard to decouple the content-independent degradation representation due to the lack of explicit constraint, resulting in over- or under-enhancement problems. To tackle this issue, we propose a novel Latent Degradation Representation Constraint Network (LDRCNet) that consists of Direction-Aware Encoder (DAEncoder), UNet Deraining Network, and Multi-Scale Interaction Block (MSIBlock). Specifically, the DAEncoder is proposed to adaptively extract latent degradation representation by using the deformable convolutions to exploit the direction consistency of rain streaks. Next, a constraint loss is introduced to explicitly constraint the degradation representation learning during training. Last, we propose an MSIBlock to fuse with the learned degradation representation and decoder features of the deraining network for adaptive information interaction, which enables the deraining network to remove various complicated rainy patterns and reconstruct image details. Experimental results on synthetic and real datasets demonstrate that our method achieves new state-of-the-art performance

    MARA-Net: Single Image Deraining Network with Multi-level connections and Adaptive Regional Attentions

    Full text link
    Removing rain streaks from single images is an important problem in various computer vision tasks because rain streaks can degrade outdoor images and reduce their visibility. While recent convolutional neural network-based deraining models have succeeded in capturing rain streaks effectively, difficulties in recovering the details in rain-free images still remain. In this paper, we present a multi-level connection and adaptive regional attention network (MARA-Net) to properly restore the original background textures in rainy images. The first main idea is a multi-level connection design that repeatedly connects multi-level features of the encoder network to the decoder network. Multi-level connections encourage the decoding process to use the feature information of all levels. Channel attention is considered in multi-level connections to learn which level of features is important in the decoding process of the current level. The second main idea is a wide regional non-local block (WRNL). As rain streaks primarily exhibit a vertical distribution, we divide the grid of the image into horizontally-wide patches and apply a non-local operation to each region to explore the rich rain-free background information. Experimental results on both synthetic and real-world rainy datasets demonstrate that the proposed model significantly outperforms existing state-of-the-art models. Furthermore, the results of the joint deraining and segmentation experiment prove that our model contributes effectively to other vision tasks

    GridFormer: Residual Dense Transformer with Grid Structure for Image Restoration in Adverse Weather Conditions

    Full text link
    Image restoration in adverse weather conditions is a difficult task in computer vision. In this paper, we propose a novel transformer-based framework called GridFormer which serves as a backbone for image restoration under adverse weather conditions. GridFormer is designed in a grid structure using a residual dense transformer block, and it introduces two core designs. First, it uses an enhanced attention mechanism in the transformer layer. The mechanism includes stages of the sampler and compact self-attention to improve efficiency, and a local enhancement stage to strengthen local information. Second, we introduce a residual dense transformer block (RDTB) as the final GridFormer layer. This design further improves the network's ability to learn effective features from both preceding and current local features. The GridFormer framework achieves state-of-the-art results on five diverse image restoration tasks in adverse weather conditions, including image deraining, dehazing, deraining & dehazing, desnowing, and multi-weather restoration. The source code and pre-trained models will be released.Comment: 17 pages, 12 figure
    corecore