10 research outputs found

    Self-Assembly of Infinite Structures

    Full text link
    We review some recent results related to the self-assembly of infinite structures in the Tile Assembly Model. These results include impossibility results, as well as novel tile assembly systems in which shapes and patterns that represent various notions of computation self-assemble. Several open questions are also presented and motivated

    Size-Dependent Tile Self-Assembly: Constant-Height Rectangles and Stability

    Full text link
    We introduce a new model of algorithmic tile self-assembly called size-dependent assembly. In previous models, supertiles are stable when the total strength of the bonds between any two halves exceeds some constant temperature. In this model, this constant temperature requirement is replaced by an nondecreasing temperature function τ:NN\tau : \mathbb{N} \rightarrow \mathbb{N} that depends on the size of the smaller of the two halves. This generalization allows supertiles to become unstable and break apart, and captures the increased forces that large structures may place on the bonds holding them together. We demonstrate the power of this model in two ways. First, we give fixed tile sets that assemble constant-height rectangles and squares of arbitrary input size given an appropriate temperature function. Second, we prove that deciding whether a supertile is stable is coNP-complete. Both results contrast with known results for fixed temperature.Comment: In proceedings of ISAAC 201

    Pictures worth a thousand tiles, a geometrical programming language for self-assembly

    Get PDF
    International audienceWe present a novel way to design self-assembling systems using a notion of signal (or ray) akin to what is used in analyzing the behavior of cellular automata. This allows purely geometrical constructions, with a smaller specification and easier analysis. We show how to design a system of signals for a given set of shapes, and how to transform these signals into a set of tiles which self-assemble into the desired shapes. We show how to use this technique on three examples : squares (with optimal assembly time and a small number of tiles), general polygons, and a quasi periodic pattern : Robinson tiling

    Self-assembly: modelling, simulation, and planning

    Get PDF
    Samoskládání je proces, při kterém se kolekce neuspořádaných částic samovolně orientuje do uspořádaného vzoru nebo funkční struktury bez působení vnější síly, pouze za pomoci lokálních interakcí mezi samotnými částicemi. Tato teze se zaměřuje na teorii dlaždicových samoskládacích systémů a jejich syntézu. Nejdříve je představena oblast výzkumu věnující se dlaždičovým samoskládacím systémům, a poté jsou důkladně popsány základní typy dlaždicových skládacích systémů, kterými jsou abstract Tile Assembly Model (aTAM ), kinetic Tile Assembly Model (kTAM ), a 2-Handed Assembly Model (2HAM ). Poté jsou představeny novější modely a modely se specifickým použitím. Dále je zahrnut stručný popis původu teorie dlaždicového samoskládání společně s krátkým popisem nedávného výzkumu. Dále jsou představeny dva obecné otevřené problémy dlaždicového samoskládání s hlavním zaměřením na problém Pattern Self-Assembly Tile Set Synthesis (PATS), což je NP-těžká kombinatorická optimalizační úloha. Nakonec je ukázán algoritmus Partition Search with Heuristics (PS-H ), který se používá k řešení problému PATS. Následovně jsou demonstrovány dvě aplikace, které byly vyvinuty pro podporu výzkumu abstraktních dlaždicových skládacích modelů a syntézy množin dlaždic pro samoskládání zadaných vzorů. První aplikace je schopná simulovat aTAM a 2HAM systémy ve 2D prostoru. Druhá aplikace je řešič PATS problému, který využívá algoritmu PS-H. Pro obě aplikace jsou popsány hlavní vlastnosti a návrhová rozhodnutí, která řídila jejich vývoj. Nakonec jsou předloženy výsledky několika experimentů. Jedna skupina experimentů byla zaměřena na ověření výpočetní náročnosti vyvinutých algoritmů pro simulátor. Druhá sada experimentů zkoumala vliv jednotlivých vlastností vzorů na vlastnosti dlaždicových systémů, které byly získány syntézou ze vzorů pomocí vyvinutého řešiče PATS problému. Bylo prokázáno, že algoritmus simulující aTAM systém má lineární časovou výpočetní náročnost, zatímco algoritmus simulující 2HAM systém má exponenciální časovou výpočetní náročnost, která navíc silně závisí na simulovaném systému. Aplikace pro řešení syntézy množiny dlaždic ze vzorů je schopna najít relativně malé řešení i pro velké zadané vzory, a to v přiměřeném čase.Self-assembly is the process in which a collection of disordered units organise themselves into ordered patterns or functional structures without any external direction, solely using local interactions among the components. This thesis focuses on the theory of tile-based self-assembly systems and their synthesis. First, an introduction to the study field of tile-based self-assembly systems are given, followed by a thorough description of common types of tile assembly systems such as abstract Tile Assembly Model (aTAM ), kinetic Tile Assembly Model (kTAM ), and 2-Handed Assembly Model (2HAM ). After that, various recently developed models and models with specific applications are listed. A brief summary of the origins of the tile-based self-assembly is also included together with a short review of recent results. Two general open problems are presented with the main focus on the Pattern Self-Assembly Tile Set Synthesis (PATS) problem, which is NP-hard combinatorial optimisation problem. Partition Search with Heuristics (PS-H ) algorithm is presented as it is used for solving the PATS problem. Next, two applications which were developed to study the abstract tile assembly models and the synthesis of tile sets for pattern self-assembly are introduced. The first application is a simulator capable of simulating aTAM and 2HAM systems in 2D. The second application is a solver of the PATS problem based around the PS-H algorithm. Main features and design decisions are described for both applications. Finally, results from several experiments are presented. One set of experiments were focused on verification of computation complexity of algorithms developed for the simulator, and the other set of experiments studied the influences of the properties of the pattern on the tile assembly system synthesised by our implementation of PATS problem solver. It was shown that the algorithm for simulating aTAM systems have linear computation time complexity, whereas the algorithm simulating 2HAM systems have exponential computation time complexity, which strongly varies based on the simulated system. The synthesiser application is capable of finding a relatively small solution even for quite large input patterns in reasonable amounts of time

    Active Self-Assembly of Simple Units Using an Insertion Primitive

    Get PDF
    While computer science has given us a framework for determining the complexity and difficulty of solving computational problems, we do not yet have a theoretical framework for knowing what actions, behaviors, and life-like qualities can emerge from a given set of simple modular units. There has been much interest in developing models for programming active self-assembly processes in both the reconfigurable robotics community and the nanotechnology community. With respect to materials science and nanotechnology, the models proposed to date are either not yet implementable with our current understanding of synthetic chemistry or those that are implementable are limited to a set of features that do not capture the power of active components. Prior implementable models of molecular assembly only considered the passive behaviors of attaching and detaching from a complex. Inspired by the algorithmic tile assembly model [Winfree, 1996] and the graph grammar assembly model [Klavins et al., 2004], we describe a formal model for studying the complexity of self-assembled structures with active molecular components. In particular, we add an insertion primitive and we show a direct mapping of our model to a molecular implementation using DNA. We show that the expressive power of this language is stronger than regular languages, but at most as strong as context free grammars. Here, we explore the trade-off between the complexity of the system (in terms of the number of unit types), and the behavior of the system and speed of its assembly. We find that we can grow a line of any given length n in expected time O(log^3 n) using O(log^2 n) monomers. If we grow a line with k insertion rules, either the expected final length is infinite or the expected length at time t is at most (2t+2)^k^2, which is polynomial in t

    Self-assemblying Classes of Shapes with a Minimum Number of Tiles, and in Optimal Time

    No full text
    International audienceIn this paper we construct fixed finite tile systems that assemble into particular classes of shapes. Moreover, given an arbitrary n, we show how to calculate the tile concentrations in order to ensure that the expected size of the produced shape is n. For rectangles and squares our constructions are optimal (with respect to the size of the systems). We also introduce the notion of parallel time, which is a good approximation of the classical asynchronous time. We prove that our tile systems produce the rectangles and squares in linear parallel time (with respect to the diameter). Those results are optimal. Finally, we introduce the class of diamonds. For these shapes we construct a non trivial tile system having also a linear parallel time complexity

    Self-assemblying classes of shapes with a minimum number of tiles, and in optimal time ⋆

    No full text
    Abstract. In this paper we construct fixed finite tile systems that assemble into particular classes of shapes. Moreover, given an arbitrary n, we show how to calculate the tile concentrations in order to ensure that the expected size of the produced shape is n. For rectangles and squares our constructions are optimal (with respect to the size of the systems). We also introduce the notion of parallel time, which is a good approximation of the classical asynchronous time. We prove that our tile systems produce the rectangles and squares in linear parallel time (with respect to the diameter). Those results are optimal. Finally, we introduce the class of diamonds. For these shapes we construct a non trivial tile system having also a linear parallel time complexity.

    Obstacles to trade in the Pacific area: Proceedings of the Fourth Pacific Trade and Development Conference

    Get PDF
    The Fourth Pacific Trade and Development Conference was held in Ottawa, Canada, on October 7 to 10, 1971. The Conference program was outlined in the late summer of 1970, but it proved particularly topical in the wake of the currency and trade crisis following August 15, 1971. Although the realignment of currencies agreed in December has eased international monetary relationships, trade problems remain. Especially in the Pacific area, the potential of trade as an engine of economic growth and as a basis for constructive political relationships is difficult to overemphasize. The mutuality of interests in international trade between the developed countries of the region is well known. Of increasing importance is the export potential and performance of developing countries in South and East Asia. The future record of industrially advanced countries in reduction or control of barriers to trade affecting developing countries' exports will test the sincerity of many who have professed to favour the liberalization of trade as a stimulus to development. The willingness and ability of developed countries to adjust their industrial structure will be the major theme of the Fifth Trade and Development Conference scheduled for Tokyo in January, 1973. The Canadian host committee of the Fourth Conference in releasing the proceedings of the Conference wish to express appreciation to all those who have made possible the success of the Conference and the preparation of this volume. In particular, we wish to thank the public and private financial supporters in Australia, Canada, Japan, and the United States whose assistance has been essential. We also wish to thank those students, faculty, and staff members at Carleton who helped with local arrangements and the editing and preparation of the proceedings. The main responsibility for the latter task rested on Tom Burlington, who has recently gone to Japan to take up employment with the International Development Center of Japan

    D-STEM: a Design led approach to STEM innovation

    Get PDF
    Advances in the Science, Technology, Engineering and Maths (STEM) disciplines offer opportunities for designers to propose and make products with advanced, enhanced and engineered properties and functionalities. In turn, these advanced characteristics are becoming increasingly necessary as resources become ever more strained through 21st century demands, such as ageing populations, connected communities, depleting raw materials, waste management and energy supply. We need to make things that are smarter, make our lives easier, better and simpler. The products of tomorrow need to do more with less. It is recognised that STEM subjects need Design to translate and realise their full value to the economy and that Design’s role is greater than being a creator of objects. The issue is how to maximize the potential for exploiting opportunities offered by STEM developments and how best to enable designers to strengthen their position within the innovation ecosystem as active agents of change. As a society, we need designers able to navigate emerging developments from the STEM community to a level that enables understanding and knowledge of the new material properties, the skill set to facilitate absorption into the design ‘toolbox’ and the agility to identify, manage, contextualise and influence innovation opportunities emerging from STEM developments. This paper proposes the blueprint for a new design led approach to STEM innovation that begins to redefine studio culture for the 21st Century
    corecore