10,992 research outputs found

    Optimal Tilings of Bipartite Graphs Using Self-Assembling DNA

    Get PDF
    Motivated by the recent advancements in nanotechnology and the discovery of new laboratory techniques using the Watson-Crick complementary properties of DNA strands, formal graph theory has recently become useful in the study of self-assembling DNA complexes. Construction methods based on graph theory have resulted in significantly increased efficiency. We present the results of applying graph theoretical and linear algebra techniques for constructing crossed-prism graphs, crown graphs, book graphs, stacked book graphs, and helm graphs, along with kite, cricket, and moth graphs. In particular, we explore various design strategies for these graph families in two sets of laboratory constraints

    Size-Dependent Tile Self-Assembly: Constant-Height Rectangles and Stability

    Full text link
    We introduce a new model of algorithmic tile self-assembly called size-dependent assembly. In previous models, supertiles are stable when the total strength of the bonds between any two halves exceeds some constant temperature. In this model, this constant temperature requirement is replaced by an nondecreasing temperature function τ:NN\tau : \mathbb{N} \rightarrow \mathbb{N} that depends on the size of the smaller of the two halves. This generalization allows supertiles to become unstable and break apart, and captures the increased forces that large structures may place on the bonds holding them together. We demonstrate the power of this model in two ways. First, we give fixed tile sets that assemble constant-height rectangles and squares of arbitrary input size given an appropriate temperature function. Second, we prove that deciding whether a supertile is stable is coNP-complete. Both results contrast with known results for fixed temperature.Comment: In proceedings of ISAAC 201

    Combinatorial optimization problems in self-assembly

    Get PDF
    Self-assembly is the ubiquitous process by which simple objects autonomously assemble into intricate complexes. It has been suggested that intricate self-assembly processes will ultimately be used in circuit fabrication, nano-robotics, DNA computation, and amorphous computing. In this paper, we study two combinatorial optimization problems related to efficient self-assembly of shapes in the Tile Assembly Model of self-assembly proposed by Rothemund and Winfree [18]. The first is the Minimum Tile Set Problem, where the goal is to find the smallest tile system that uniquely produces a given shape. The second is the Tile Concentrations Problem, where the goal is to decide on the relative concentrations of different types of tiles so that a tile system assembles as quickly as possible. The first problem is akin to finding optimum program size, and the second to finding optimum running time for a "program" to assemble the shape.Self-assembly is the ubiquitous process by which simple objects autonomously assemble into intricate complexes. It has been suggested that intricate self-assembly processes will ultimately be used in circuit fabrication, nano-robotics, DNA computation, and amorphous computing. In this paper, we study two combinatorial optimization problems related to efficient self-assembly of shapes in the Tile Assembly Model of self-assembly proposed by Rothemund and Winfree [18]. The first is the Minimum Tile Set Problem, where the goal is to find the smallest tile system that uniquely produces a given shape. The second is the Tile Concentrations Problem, where the goal is to decide on the relative concentrations of different types of tiles so that a tile system assembles as quickly as possible. The first problem is akin to finding optimum program size, and the second to finding optimum running time for a "program" to assemble the shape. We prove that the first problem is NP-complete in general, and polynomial time solvable on trees and squares. In order to prove that the problem is in NP, we present a polynomial time algorithm to verify whether a given tile system uniquely produces a given shape. This algorithm is analogous to a program verifier for traditional computational systems, and may well be of independent interest. For the second problem, we present a polynomial time O(logn)O(\log n)-approximation algorithm that works for a large class of tile systems that we call partial order systems

    Reflections on Tiles (in Self-Assembly)

    Full text link
    We define the Reflexive Tile Assembly Model (RTAM), which is obtained from the abstract Tile Assembly Model (aTAM) by allowing tiles to reflect across their horizontal and/or vertical axes. We show that the class of directed temperature-1 RTAM systems is not computationally universal, which is conjectured but unproven for the aTAM, and like the aTAM, the RTAM is computationally universal at temperature 2. We then show that at temperature 1, when starting from a single tile seed, the RTAM is capable of assembling n x n squares for n odd using only n tile types, but incapable of assembling n x n squares for n even. Moreover, we show that n is a lower bound on the number of tile types needed to assemble n x n squares for n odd in the temperature-1 RTAM. The conjectured lower bound for temperature-1 aTAM systems is 2n-1. Finally, we give preliminary results toward the classification of which finite connected shapes in Z^2 can be assembled (strictly or weakly) by a singly seeded (i.e. seed of size 1) RTAM system, including a complete classification of which finite connected shapes be strictly assembled by a "mismatch-free" singly seeded RTAM system.Comment: New results which classify the types of shapes which can self-assemble in the RTAM have been adde
    corecore