408 research outputs found

    Cooperative Network Formation between Swarm Robots

    Get PDF
    Swarm robot technology could be used in future daily applications. It does not require a lot of manpower once it is deployed into the field compared to doing large scale tasks manually done by humans. However, the downside of using swarm robots is that when the number of agents grow the communication between the swarms will also gradually get more complicated. Besides that, when moving large number of agents in a swarm towards completing a specific task together will also be a challenge due to the monitoring of each swarm agent’s location. Lastly, the swarms should be able to reestablish their location with the large swarms if it ever gets lost from the pack. In order to overcome these problems, engineers have been exploring various ways of making robots work together and communicate with each other with different methods and tools. For this project, it will focus more on the type of wireless communication used, ranging from short range Bluetooth to long range Wi-Fi. With the wireless communication established, the swarms should be able to perform multi-hop communication with each agents through different network topologies. Finally, the swarm robots requires a cooperative algorithm in order for it to adapt to various situation in the different environments. When each agent is deployed into outdoor environments, it will have to adapt to the surroundings while maintaining a certain predetermined flight formation and constant communication with each agent and the base station

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Swarmodroid 1.0: A Modular Bristle-Bot Platform for Robotic Active Matter Studies

    Full text link
    Large swarms of extremely simple robots (i.e., capable just of basic motion activities, like propelling forward or self-rotating) are widely applied to study collective task performance based on self-organization or local algorithms instead of sophisticated programming and global swarm coordination. Moreover, they represent a versatile yet affordable platform for experimental studies in physics, particularly in active matter - non-equilibrium assemblies of particles converting their energy to a directed motion. However, a large set of robotics platforms is being used in different studies, while the universal design is still lacking. Despite such platforms possess advantages in certain application scenarios, their large number sufficiently limits further development of results in the field, as advancing some study requires to buy or manually produce the corresponding robots. To address this issue, we develop an open-source Swarmodroid 1.0 platform based on bristle-bots with reconfigurable 3D-printed bodies, external control of motion velocity, and basic capabilities of velocity profile programming. In addition, we introduce AMPy software package in Python featuring OpenCV-based extraction of robotic swarm kinematics accompanied by the evaluation of key physical quantities describing the collective dynamics. We perform a detailed analysis of individual Swarmodroids' motion characteristics and address their use cases with two examples: a cargo transport performed by self-rotating robots and a velocity-dependent jam formation in a bottleneck by self-propelling robots. Finally, we provide a comparison of existing centimeter-scale robotic platforms, a review of key quantities describing collective dynamics of many-particle systems, and a comprehensive outlook considering potential applications as well as further directions for fundamental studies and Swarmodroid 1.0 platform development.Comment: 18 pages, 7 figures, 1 table + Supplementary Information. Comments are welcom

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Routing schemes in FANETs: a survey

    Get PDF
    Flying ad hoc network (FANET) is a self-organizing wireless network that enables inexpensive, flexible, and easy-to-deploy flying nodes, such as unmanned aerial vehicles (UAVs), to communicate among themselves in the absence of fixed network infrastructure. FANET is one of the emerging networks that has an extensive range of next-generation applications. Hence, FANET plays a significant role in achieving application-based goals. Routing enables the flying nodes to collaborate and coordinate among themselves and to establish routes to radio access infrastructure, particularly FANET base station (BS). With a longer route lifetime, the effects of link disconnections and network partitions reduce. Routing must cater to two main characteristics of FANETs that reduce the route lifetime. Firstly, the collaboration nature requires the flying nodes to exchange messages and to coordinate among themselves, causing high energy consumption. Secondly, the mobility pattern of the flying nodes is highly dynamic in a three-dimensional space and they may be spaced far apart, causing link disconnection. In this paper, we present a comprehensive survey of the limited research work of routing schemes in FANETs. Different aspects, including objectives, challenges, routing metrics, characteristics, and performance measures, are covered. Furthermore, we present open issues

    A general architecture for robotic swarms

    Get PDF
    Swarms are large groups of simplistic individuals that collectively solve disproportionately complex tasks. Individual swarm agents are limited in perception, mechanically simple, have no global knowledge and are cheap, disposable and fallible. They rely exclusively on local observations and local communications. A swarm has no centralised control. These features are typifed by eusocial insects such as ants and termites, who construct nests, forage and build complex societies comprised of primitive agents. This project created the basis of a general swarm architecture for the control of insect-like robots. The Swarm Architecture is inspired by threshold models of insect behaviour and attempts to capture the salient features of the hive in a closely defined computer program that is hardware agnostic, swarm size indifferent and intended to be applicable to a wide range of swarm tasks. This was achieved by exploiting the inherent limitations of swarm agents. Individual insects were modelled as a machine capable only of perception, locomotion and manipulation. This approximation reduced behaviour primitives to a fixed tractable number and abstracted sensor interpretation. Cooperation was achieved through stigmergy and decisions made via a behaviour threshold model. The Architecture represents an advance on previous robotic swarms in its generality - swarm control software has often been tied to one task and robot configuration. The Architecture's exclusive focus on swarms, sets it apart from existing general cooperative systems, which are not usually explicitly swarm orientated. The Architecture was implemented successfully on both simulated and real-world swarms

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas
    • …
    corecore