1,305 research outputs found

    Kickstarting Choreographic Programming

    Full text link
    We present an overview of some recent efforts aimed at the development of Choreographic Programming, a programming paradigm for the production of concurrent software that is guaranteed to be correct by construction from global descriptions of communication behaviour

    Combining behavioural types with security analysis

    Get PDF
    Today's software systems are highly distributed and interconnected, and they increasingly rely on communication to achieve their goals; due to their societal importance, security and trustworthiness are crucial aspects for the correctness of these systems. Behavioural types, which extend data types by describing also the structured behaviour of programs, are a widely studied approach to the enforcement of correctness properties in communicating systems. This paper offers a unified overview of proposals based on behavioural types which are aimed at the analysis of security properties

    Behavioral types in programming languages

    Get PDF
    A recent trend in programming language research is to use behav- ioral type theory to ensure various correctness properties of large- scale, communication-intensive systems. Behavioral types encompass concepts such as interfaces, communication protocols, contracts, and choreography. The successful application of behavioral types requires a solid understanding of several practical aspects, from their represen- tation in a concrete programming language, to their integration with other programming constructs such as methods and functions, to de- sign and monitoring methodologies that take behaviors into account. This survey provides an overview of the state of the art of these aspects, which we summarize as the pragmatics of behavioral types

    Dynamic Choreographies - Safe Runtime Updates of Distributed Applications

    Get PDF
    Programming distributed applications free from communication deadlocks and races is complex. Preserving these properties when applications are updated at runtime is even harder. We present DIOC, a language for programming distributed applications that are free from deadlocks and races by construction. A DIOC program describes a whole distributed application as a unique entity (choreography). DIOC allows the programmer to specify which parts of the application can be updated. At runtime, these parts may be replaced by new DIOC fragments from outside the application. DIOC programs are compiled, generating code for each site, in a lower-level language called DPOC. We formalise both DIOC and DPOC semantics as labelled transition systems and prove the correctness of the compilation as a trace equivalence result. As corollaries, DPOC applications are free from communication deadlocks and races, even in presence of runtime updates.Comment: Technical Repor
    • …
    corecore