1,230 research outputs found

    A survey of flooding, gossip routing, and related schemes for wireless multi- hop networks

    Get PDF
    Flooding is an essential and critical service in computer networks that is used by many routing protocols to send packets from a source to all nodes in the network. As the packets are forwarded once by each receiving node, many copies of the same packet traverse the network which leads to high redundancy and unnecessary usage of the sparse capacity of the transmission medium. Gossip routing is a well-known approach to improve the flooding in wireless multi-hop networks. Each node has a forwarding probability p that is either statically per-configured or determined by information that is available at runtime, e.g, the node degree. When a packet is received, the node selects a random number r. If the number r is below p, the packet is forwarded and otherwise, in the most simple gossip routing protocol, dropped. With this approach the redundancy can be reduced while at the same time the reachability is preserved if the value of the parameter p (and others) is chosen with consideration of the network topology. This technical report gives an overview of the relevant publications in the research domain of gossip routing and gives an insight in the improvements that can be achieved. We discuss the simulation setups and results of gossip routing protocols as well as further improved flooding schemes. The three most important metrics in this application domain are elaborated: reachability, redundancy, and management overhead. The published studies used simulation environments for their research and thus the assumptions, models, and parameters of the simulations are discussed and the feasibility of an application for real world wireless networks are highlighted. Wireless mesh networks based on IEEE 802.11 are the focus of this survey but publications about other network types and technologies are also included. As percolation theory, epidemiological models, and delay tolerant networks are often referred as foundation, inspiration, or application of gossip routing in wireless networks, a brief introduction to each research domain is included and the applicability of the particular models for the gossip routing is discussed

    Preliminary specification and design documentation for software components to achieve catallaxy in computational systems

    Get PDF
    This Report is about the preliminary specifications and design documentation for software components to achieve Catallaxy in computational systems. -- Die Arbeit beschreibt die Spezifikation und das Design von Softwarekomponenten, um das Konzept der Katallaxie in Grid Systemen umzusetzen. Eine Einfรผhrung ordnet das Konzept der Katallaxie in bestehende Grid Taxonomien ein und stellt grundlegende Komponenten vor. AnschlieรŸend werden diese Komponenten auf ihre Anwendbarkeit in bestehenden Application Layer Netzwerken untersucht.Grid Computing

    Data-Adaptive Wavelets and Multi-Scale Singular Spectrum Analysis

    Full text link
    Using multi-scale ideas from wavelet analysis, we extend singular-spectrum analysis (SSA) to the study of nonstationary time series of length NN whose intermittency can give rise to the divergence of their variance. SSA relies on the construction of the lag-covariance matrix C on M lagged copies of the time series over a fixed window width W to detect the regular part of the variability in that window in terms of the minimal number of oscillatory components; here W = M Dt, with Dt the time step. The proposed multi-scale SSA is a local SSA analysis within a moving window of width M <= W <= N. Multi-scale SSA varies W, while keeping a fixed W/M ratio, and uses the eigenvectors of the corresponding lag-covariance matrix C_M as a data-adaptive wavelets; successive eigenvectors of C_M correspond approximately to successive derivatives of the first mother wavelet in standard wavelet analysis. Multi-scale SSA thus solves objectively the delicate problem of optimizing the analyzing wavelet in the time-frequency domain, by a suitable localization of the signal's covariance matrix. We present several examples of application to synthetic signals with fractal or power-law behavior which mimic selected features of certain climatic and geophysical time series. A real application is to the Southern Oscillation index (SOI) monthly values for 1933-1996. Our methodology highlights an abrupt periodicity shift in the SOI near 1960. This abrupt shift between 4 and 3 years supports the Devil's staircase scenario for the El Nino/Southern Oscillation phenomenon.Comment: 24 pages, 19 figure

    ๊ธฐ๊ณ„ ํ•™์Šต ๋ฐฉ๋ฒ•๋ก ์„ ํ†ตํ•œ ์ƒ์ „์ด ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ๋ฌผ๋ฆฌํ•™๊ณผ, 2021. 2. ๊ฐ•๋ณ‘๋‚จ.๋ณธ ์—ฐ๊ตฌ๋Š” ์–‘์ž ์ ‘์ด‰ ๋ชจํ˜•์˜ ์–‘์ž ์ƒ์ „์ด๋ฅผ ์ธ๊ณต์‹ ๊ฒฝ๋ง์— ๋Œ€ํ•œ ๊ธฐ๋ฐ˜ ๊ธฐ๊ณ„ ํ•™์Šต ๋ฐฉ๋ฒ•๋ก ์„ ํ†ตํ•ด ๋ถ„์„ํ•˜์˜€๊ณ  ์—ด๋ฆฐ ์–‘์ž๊ณ„์˜ ์ƒˆ๋กœ์šด ๋ณดํŽธ์„ฑ์„ ๊ฐ€์ง€๋Š” ์ž„๊ณ„ํ˜„์ƒ์ด ์žˆ์Œ์„ ๋ฐํ˜€๋‚ด์—ˆ๋‹ค. ๋˜ํ•œ ๊ธฐ๊ณ„ ํ•™์Šต ๋ฐฉ๋ฒ•๋ก ์œผ๋กœ ๊ตฌ๋ผ๋ชจํ†  ๋ชจํ˜•์˜ ๋™๊ธฐํ™” ์ƒ์ „์ด์˜ ์ž„๊ณ„ํ˜„์ƒ์„ ๋ถ„์„ํ•˜๊ณ  ๋™์—ญํ•™ ๊ฑฐ๋™์„ ์˜ˆ์ธกํ•˜๋ฏ€๋กœ์จ ๋™๊ธฐํ™” ํ˜„์ƒ์— ๋Œ€ํ•œ ๊ธฐ๊ณ„ ํ•™์Šต์„ ๋Œ€์•ˆ์ ์ธ ์ˆ˜์น˜ ๋ถ„์„์˜ ํ‹€๊ฑฐ๋ฆฌ๋กœ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ์ œ1์žฅ์€ ์ž„๊ณ„ ํ˜„์ƒ์— ๋Œ€ํ•œ ์ƒ์ „์ด ์ด๋ก ๊ณผ ๊ธฐ๊ณ„ ํ•™์Šต ๋ฐฉ๋ฒ•๋ก ์— ๋Œ€ํ•œ ์ผ๋ฐ˜์ ์ธ ๊ฐœ๋…๋“ค์„ ๊ฐœ๊ด„ํ•œ๋‹ค. ์ „ํ†ต์ ์ธ ์ƒ์ „์ด ์ด๋ก ์€ ํ†ต๊ณ„๋ฌผ๋ฆฌํ•™์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ „๊ฐœ๋˜๋ฉฐ ์ž„๊ณ„์  ๊ทผ๋ฐฉ์—์„œ ๋ฐœํ˜„ํ•˜๋Š” ์ž„๊ณ„ ํ˜„์ƒ๊ณผ ๊ทธ ๋ณดํŽธ์„ฑ์„ ๋‹ค๋ฃฌ๋‹ค. ๊ธฐ๊ณ„ ํ•™์Šต ๋ฐฉ๋ฒ•๋ก ์€ ๊ธฐ๊ณ„ ํ•™์Šต์˜ ์ฃผ์š” ์š”์†Œ๋“ค์„ ์ •์˜ํ•˜๊ณ  ๋ชจํ˜•์˜ ํ˜•ํƒœ์™€ ๋ชจํ˜•์˜ ์ตœ์ ํ™” ๊ณผ์ •์— ๋Œ€ํ•œ ์ˆ˜ํ•™์ ์ธ ๊ธฐ์ˆ ์„ ์ œ๊ณตํ•œ๋‹ค. ๋”๋ถˆ์–ด์„œ ๊ธฐ๊ณ„ ํ•™์Šต ๋ฐฉ๋ฒ•๋ก  ๊ฐ€์šด๋ฐ์„œ ์œ ๋งํ•œ ์ธ๊ณต์‹ ๊ฒฝ๋ง์„ ๊ตฌํ˜„ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์†Œ๊ฐœํ•˜์˜€๋‹ค. ์ œ2์žฅ์€ ์–‘์ž ์ ‘์ด‰ ๊ณผ์ •์˜ ์–‘์ž ์ƒ์ „์ด์— ๋Œ€ํ•œ ๊ธฐ๊ณ„ ํ•™์Šต ๋ฐฉ๋ฒ•๋ก ์„ ๋‹ค๋ฃฌ๋‹ค. ์šฐ๋ฆฌ๋Š” ์–‘์ž ๋„์•ฝ ๋ชฌํ…Œ ์นด๋ฅผ๋กœ๋ฅผ ์ด์šฉํ•˜์—ฌ ์–‘์ž ์ ‘์ด‰ ๊ณผ์ •์„ ๋”ฐ๋ฅด๋Š” 1์ฐจ์› ์Šคํ•€ ์‚ฌ์Šฌ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜์˜€๊ณ  ๊ด€์ธก๋œ ํ™œ์„ฑ ๋ฐ€๋„์— ๋”ฐ๋ผ ์‹œ์Šคํ…œ์ด ํ™œ์„ฑ ์ƒํƒœ์ธ์ง€ ํก์ˆ˜ ์ƒํƒœ์ธ์ง€๋ฅผ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง๊ณผ ์™„์ „๊ฒฐํ•ฉ ์‹ ๊ฒฝ๋ง๊ณผ ๊ฐ™์€ ์ธ๊ณต์‹ ๊ฒฝ๋ง์„ ์ง€๋„ ํ•™์Šต์‹œ์ผฐ๋‹ค. ์œ ํ•œ ํฌ๊ธฐ ์ถ•์ ๋ฒ•๋งŒ์„ ์ด์šฉํ•ด์„œ๋Š” ์ฐพ๊ธฐ ์–ด๋ ค์› ๋˜ ์–‘์ž ์ƒ์ „์ด์˜ ์ž„๊ณ„์ ์„ ์ธ๊ณต์‹ ๊ฒฝ๋ง์˜ ํ•™์Šต ๊ฒฐ๊ณผ์— ์™ธ์‚ฝ๋ฒ•์„ ์ ์šฉํ•˜์—ฌ ์ •๊ตํ•˜๊ฒŒ ์ธก์ •ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ธฐ๊ณ„ ํ•™์Šต์„ ํ†ตํ•ด์„œ ์–ป์–ด์ง„ ์ž„๊ณ„์ ์—์„œ ๊ด€์ธก๋˜๋Š” ์ž„๊ณ„ ๋™์—ญํ•™์„ ์œ ํ•œ ํฌ๊ธฐ ์ถ•์ฒ™๋ฒ•์„ ์ ์šฉํ•˜์—ฌ 1์ฐจ์›์—์„œ ์–‘์ž ์ ‘์ด‰ ๊ณผ์ •์˜ ์ž„๊ณ„์ง€์ˆ˜๋“ค์„ ๊ตฌํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. 1์ฐจ์› ์–‘์ž ์ ‘์ด‰ ๊ณผ์ •์˜ ์ž„๊ณ„์ง€์ˆ˜๋“ค ๊ฐ€์šด๋ฐ์„œ ์Šคํ•€ ์ฒด์ธ์˜ ํ™œ์„ฑ ๋ฐ€๋„์— ๊ด€ํ•œ ์ž„๊ณ„์ง€์ˆ˜๊ฐ€ ๊ณ ์ „์ ์ธ ๋‹จ๋ฐฉํ–ฅ ์Šค๋ฏธ๊ธฐ ๋ชจํ˜•์—์„œ ์–ป์–ด์ง€๋Š” ์ž„๊ณ„์ง€์ˆ˜์™€ ๋‹ค๋ฅด๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๊ณ  ์–‘์ž ์ƒ์ „์ด๊ฐ€ ์ƒˆ๋กœ์šด ๋ณดํŽธ์„ฑ์„ ๋ณด์ž„์„ ๋ฐํ˜€๋‚ด์—ˆ๋‹ค. ์ œ3์žฅ์€ ์ฟ ๋ผ๋ชจํ†  ๋ชจํ˜•์˜ ๋™๊ธฐํ™” ์ƒ์ „์ด์— ๋Œ€ํ•œ ๊ธฐ๊ณ„ ํ•™์Šต ๋ฐฉ๋ฒ•๋ก ์„ ๋‹ค๋ฃฌ๋‹ค. ๊ตฌ๋ผ๋ชจํ†  ๋ชจํ˜•์„ ๋”ฐ๋ผ ์›€์ง์ด๋Š” ์ง„๋™์ž๋“ค์˜ ์œ„์ƒ ๊ฑฐ๋™์„ ๊ด€์ธกํ•˜๊ณ  ์ง„๋™์ž๋“ค ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์˜ ์„ธ๊ธฐ์ธ ๊ฒฐํ•ฉ ์ƒ์ˆ˜๋ฅผ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋„๋ก ์ˆœํ™˜ ์‹ ๊ฒฝ๋ง๊ณผ ์ „๋ฐฉํ–ฅ ์‹ ๊ฒฝ๋ง๊ณผ ๊ฐ™์€ ์ธ๊ณต์‹ ๊ฒฝ๋ง์— ์ง€๋„ ํ•™์Šต์‹œ์ผฐ๋‹ค. ํ•™์Šต๋œ ์ธ๊ณต์‹ ๊ฒฝ๋ง์€ ๋™๊ธฐํ™”๋œ ์ƒํƒœ์˜ ์ง„๋™์ž๋“ค์˜ ์ƒํ˜ธ์ž‘์šฉ์˜ ์„ธ๊ธฐ๋ฅผ ์ธก์ •ํ•  ์ˆ˜ ์žˆ์—ˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ธฐ์กด์˜ ๊ตฌ๋ผ๋ชจํ† ์˜ ์งˆ์„œ๋งบ์Œ ๋งค๊ฐœ๋ณ€์ˆ˜๋กœ๋Š” ์ถ”์ •ํ•  ์ˆ˜ ์—†์—ˆ๋˜ ๋น„๋™๊ธฐ ์ƒํƒœ์— ๋†“์—ฌ์ง„ ์ง„๋™์ž๋“ค์˜ ์ƒํ˜ธ์ž‘์šฉ์˜ ์„ธ๊ธฐ๋„ ์ธก์ •ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด ๊ฒฐ๊ณผ๋Š” ์ธ๊ณต์‹ ๊ฒฝ๋ง์ด ๋™๊ธฐ ์ƒํƒœ์— ๋Œ€ํ•œ ์ˆœ์„œ ๋งค๊ฐœ๋ณ€์ˆ˜์™€ ๋น„๋™๊ธฐ ์ƒํƒœ์— ๋Œ€ํ•œ ์ž ๋ณต ๋งค๊ฐœ๋ณ€์ˆ˜๋ฅผ ํฌ์ฐฉํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋˜ํ•œ ์šฐ๋ฆฌ๋Š” ์ง„๋™์ž๋“ค์˜ ์œ„์ƒ ์กฐํ•ฉ์„ ๋ณด๊ณ  ์‹œ์Šคํ…œ์ด ๋™๊ธฐํ™” ์ƒํƒœ์— ์žˆ๋Š”์ง€ ๋น„๋™๊ธฐ ์ƒํƒœ์— ์žˆ๋Š”์ง€๋ฅผ ํŒ๋‹จํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง๊ณผ ์™„์ „๊ฒฐํ•ฉ ์‹ ๊ฒฝ๋ง๊ณผ ๊ฐ™์€ ์ธ๊ณต์‹ ๊ฒฝ๋ง์„ ์ง€๋„ ํ•™์Šต ์‹œ์ผฐ๋‹ค. ๋ฐ์ดํ„ฐ ์ค‘์ฒฉ๋ฒ•์œผ๋กœ ์ธก์ •๋˜์ง€ ์•Š์•˜๋˜ ์ง„๋™์ž ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์˜ ๊ฑฐ๋ฆฌ์— ๊ด€ํ•œ ์ž„๊ณ„์ง€์ˆ˜๋ฅผ ์ธ๊ณต์‹ ๊ฒฝ๋ง์œผ๋กœ ์ธก์ •ํ•œ ๊ฒฐ๊ณผ๋ฅผ ์™ธ์‚ฝ๋ฒ•์œผ๋กœ ์–ป์–ด๋ƒˆ๋‹ค. ๊ธฐ๊ณ„ ํ•™์Šต ๋ฐฉ๋ฒ•๋ก ์ด ๋™๊ธฐํ™” ์ƒ์ „์ด์˜ ์ž„๊ณ„์ ๊ณผ ์ž„๊ณ„์ง€์ˆ˜๋ฅผ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•œ ์ˆ˜์น˜์ ์ธ ํ‹€๊ฑฐ๋ฆฌ๋กœ ๋ฐ์ดํ„ฐ ์ค‘์ฒฉ๋ฒ•์„ ํฌํ•จํ•œ ์œ ํ•œ ํฌ๊ธฐ ์ถ•์ฒ™๋ฒ•์— ๋Œ€ํ•œ ๋Œ€์•ˆ์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ๋” ๋‚˜์•„๊ฐ€ ์ง„๋™์ž๋“ค์˜ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ์œ„์ƒ ๋ณ€ํ™”๋ฅผ ์ €์ˆ˜์ง€ ์ปดํ“จํ„ฐ์™€ ์ˆœํ™˜ ์‹ ๊ฒฝ๋ง์— ํ•™์Šต์‹œ์ผœ ๊ตฌ๋ผ๋ชจํ†  ๋ชจํ˜•์˜ ๋™์—ญํ•™์„ ์žฌํ˜„ํ•˜๊ฑฐ๋‚˜ ์ง„๋™์ž๋“ค ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ์—ฐ๊ฒฐ๋ง์„ ์ถ”์ ํ•˜๊ธฐ๋„ ํ•˜์˜€๋‹ค. ์ œ4์žฅ์—์„œ ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ์— ์˜์˜๋ฅผ ์ •๋ฆฌํ•ด๋ณด์•˜๋‹ค. ์–‘์ž ์ ‘์ด‰ ๋ชจํ˜•์€ ์—ด๋ฆฐ ์–‘์ž๊ณ„์˜ ๋Œ€ํ‘œ์ ์ธ ๋ชจํ˜•์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธฐ๊ณ„ ํ•™์Šต ๋ฐฉ๋ฒ•๋ก ์ด ๊ณ ์ „์ ์ธ ๋ฌผ๋ฆฌ๊ณ„์™€ ๋‹ซํžŒ ์–‘์ž๊ณ„๋ฅผ ๋„˜์–ด์„œ ์—ด๋ฆฐ ์–‘์ž๊ณ„์—๋„ ์ ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋˜ํ•œ ๋ณธ ์—ฐ๊ตฌ๋Š” ๋™๊ธฐํ™” ์ƒ์ „์ด๋ฅผ ๋ณด์ด๋Š” ๋Œ€ํ‘œ์ ์ธ ๋น„์„ ํ˜• ๋™์—ญํ•™ ๋ชจํ˜•์œผ๋กœ ์ฟ ๋ผ๋ชจํ†  ๋ชจํ˜•์„ ๋‹ค๋ฃจ์—ˆ์ง€๋งŒ ํ˜ผ๋ˆ๊ณ„์˜ ๊ฑฐ๋™์„ ์˜ˆ์ธกํ•˜๊ณ  ๋™๊ธฐํ™” ํ˜„์ƒ์„ ๊ทœ๋ช…ํ•˜๊ธฐ ์œ„ํ•œ ํ›„์† ์—ฐ๊ตฌ์—์„œ ์ธ๊ณต์‹ ๊ฒฝ๋ง ๊ธฐ๋ฒ•์ด ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.This study analyzed the quantum phase transition in a quantum contact process through machine learning approaches based on the artificial neural network and discovered an open quantum system's critical phenomenon different from a classical system. Also, we analyzed the critical phenomena of the synchronization transition of the Kuramoto model with machine learning approaches and predicted the dynamic behavior of the model. It showed that the machine learning approached is an alternative framework for numerical analysis for synchronization phenomena. Chapter 1 outlines the conventional phase transition theory for critical phenomena and the general concepts of the machine learning approaches. The phase transition theory covers the critical phenomena and their universality near the critical point. Machine learning approaches define machine learning's essential elements and explain the model's type and model optimization as mathematical descriptions. Furthermore, we introduce artificial neural networks, which is a promising machine learning method. Chapter 2 includes the machine learning approaches for quantum phase transition of the quantum contact process. Using the quantum jump Monte Carlo method, we simulate a one-dimensional spin chain following a quantum contact process. We train the artificial neural networks such as convolutional neural networks and fully-connected neural networks with supervised learning to detect whether the system is in an active state or absorbing states depending on the observed density of active sites. It is hard to estimate the critical point of the quantum phase transition using only the finite-size scaling, but we measure the critical point precisely by extrapolating the well-train the artificial neural networks' results. We employ the finite-size scaling for critical dynamics at the critical point estimated by machine learning and measure the one-dimensional quantum contact process's critical exponents. As a result, we discover that the critical exponent related to the active site density in a homogeneous initial state different from the classical directed percolation model and find that quantum phase transition exhibits new universality. Chapter 3 includes the machine learning approaches for the synchronization transition of the Kuramoto model. We train the artificial neural networks such as recurrent neural networks and feed-forward networks with supervised learning to estimate the coupling constant, the strength of the interaction between oscillators from the dynamic behavior of oscillators governed by the Kuramoto model. Though the Kuramoto model's conventional order parameter can only estimate the coupling strength only in the synchronized state, the well-trained artificial neural networks measure the coupling strength among the oscillators in the synchronized asynchronous state. This result implicates that the artificial neural networks capture the order parameter for the synchronous state and the latent parameter for the asynchronous state. Also, we train the artificial neural networks such as convolutional neural networks and fully-connected neural networks with supervised learning to detect whether the system is in a synchronous state or asynchronous state according to the configuration of the oscillators' phase. Using extrapolation of the trained artificial neural network's outputs, we could estimate the critical exponent related to a correlation length between oscillators, which was not measured by the data collapse method. The machine learning approach can be an alternative to finite-size scaling methods, including the data collapse method, as a numerical framework for measuring the critical point and critical exponents of synchronization phenomena. Furthermore, as applications, we propose a reservoir computer and a recurrent neural network reproducing the Kuramoto model's dynamics or tracking the network of the interaction between oscillators. Chapter 4 remarks on the results and the meaning of this study. As the quantum contact process is a typical model of the open quantum system, this study shows that the machine learning approach can be applied to the open quantum system beyond the classical and closed quantum systems. Though this study focuses on the Kuramoto model as a typical nonlinear dynamics model exhibiting synchronization transition, we expect that the artificial neural networks will be a significant breakthrough in follow-up studies to predict the dynamical behavior of the chaotic system and to illuminate synchronization phenomena.1 Introduction 1 1.1 Theory of phase transitions 5 1.2 Machine learning 18 1.2.1 Data-driven optimization of multivariate functional 21 1.2.2 Artificial neural networks 41 2 Machine learning approach for open quantum systems 56 2.1 Quantum contact process 58 2.2 Finding the quantum phase transition 61 2.3 Finite-size scaling on quantum jump Monte Carlo 64 2.3.1 The pure quantum limit 64 2.3.2 The classcial limit 67 2.4 Discussion and Summary 69 3 Machine learning approach for non-linear dynamics systems 73 3.1 The Kuramoto model 74 3.2 Finding the coupling strength 76 3.3 Finding the synchronized state 78 3.4 Prediction of the phase dynamics 80 3.5 Reconstructing the network structure 83 3.6 Summary 85 4 Conclusion 87 Appendices 89 Appendix A Feed-forward neural networks 90 A.1 Forwarding propagation 90 A.2 Backpropagation 91 Appendix B Recurrent neural networks 95 B.1 Reservoir computer 95 Appendix C Techniques for deep learning 97 C.1 Data management 97 C.2 Advanced optimization 99 Appendix D Kasteleyn-Fortuin formalism 107 Bibliography 114 Abstract in Korean 129Docto
    • โ€ฆ
    corecore