1,413 research outputs found

    Homogeneous and Heterogeneous Face Recognition: Enhancing, Encoding and Matching for Practical Applications

    Get PDF
    Face Recognition is the automatic processing of face images with the purpose to recognize individuals. Recognition task becomes especially challenging in surveillance applications, where images are acquired from a long range in the presence of difficult environments. Short Wave Infrared (SWIR) is an emerging imaging modality that is able to produce clear long range images in difficult environments or during night time. Despite the benefits of the SWIR technology, matching SWIR images against a gallery of visible images presents a challenge, since the photometric properties of the images in the two spectral bands are highly distinct.;In this dissertation, we describe a cross spectral matching method that encodes magnitude and phase of multi-spectral face images filtered with a bank of Gabor filters. The magnitude of filtered images is encoded with Simplified Weber Local Descriptor (SWLD) and Local Binary Pattern (LBP) operators. The phase is encoded with Generalized Local Binary Pattern (GLBP) operator. Encoded multi-spectral images are mapped into a histogram representation and cross matched by applying symmetric Kullback-Leibler distance. Performance of the developed algorithm is demonstrated on TINDERS database that contains long range SWIR and color images acquired at a distance of 2, 50, and 106 meters.;Apart from long acquisition range, other variations and distortions such as pose variation, motion and out of focus blur, and uneven illumination may be observed in multispectral face images. Recognition performance of the face recognition matcher can be greatly affected by these distortions. It is important, therefore, to ensure that matching is performed on high quality images. Poor quality images have to be either enhanced or discarded. This dissertation addresses the problem of selecting good quality samples.;The last chapters of the dissertation suggest a number of modifications applied to the cross spectral matching algorithm for matching low resolution color images in near-real time. We show that the method that encodes the magnitude of Gabor filtered images with the SWLD operator guarantees high recognition rates. The modified method (Gabor-SWLD) is adopted in a camera network set up where cameras acquire several views of the same individual. The designed algorithm and software are fully automated and optimized to perform recognition in near-real time. We evaluate the recognition performance and the processing time of the method on a small dataset collected at WVU

    Deep Adaptive Feature Embedding with Local Sample Distributions for Person Re-identification

    Full text link
    Person re-identification (re-id) aims to match pedestrians observed by disjoint camera views. It attracts increasing attention in computer vision due to its importance to surveillance system. To combat the major challenge of cross-view visual variations, deep embedding approaches are proposed by learning a compact feature space from images such that the Euclidean distances correspond to their cross-view similarity metric. However, the global Euclidean distance cannot faithfully characterize the ideal similarity in a complex visual feature space because features of pedestrian images exhibit unknown distributions due to large variations in poses, illumination and occlusion. Moreover, intra-personal training samples within a local range are robust to guide deep embedding against uncontrolled variations, which however, cannot be captured by a global Euclidean distance. In this paper, we study the problem of person re-id by proposing a novel sampling to mine suitable \textit{positives} (i.e. intra-class) within a local range to improve the deep embedding in the context of large intra-class variations. Our method is capable of learning a deep similarity metric adaptive to local sample structure by minimizing each sample's local distances while propagating through the relationship between samples to attain the whole intra-class minimization. To this end, a novel objective function is proposed to jointly optimize similarity metric learning, local positive mining and robust deep embedding. This yields local discriminations by selecting local-ranged positive samples, and the learned features are robust to dramatic intra-class variations. Experiments on benchmarks show state-of-the-art results achieved by our method.Comment: Published on Pattern Recognitio

    Fusion-based Few-Shot Morphing Attack Detection and Fingerprinting

    Full text link
    The vulnerability of face recognition systems to morphing attacks has posed a serious security threat due to the wide adoption of face biometrics in the real world. Most existing morphing attack detection (MAD) methods require a large amount of training data and have only been tested on a few predefined attack models. The lack of good generalization properties, especially in view of the growing interest in developing novel morphing attacks, is a critical limitation with existing MAD research. To address this issue, we propose to extend MAD from supervised learning to few-shot learning and from binary detection to multiclass fingerprinting in this paper. Our technical contributions include: 1) We propose a fusion-based few-shot learning (FSL) method to learn discriminative features that can generalize to unseen morphing attack types from predefined presentation attacks; 2) The proposed FSL based on the fusion of the PRNU model and Noiseprint network is extended from binary MAD to multiclass morphing attack fingerprinting (MAF). 3) We have collected a large-scale database, which contains five face datasets and eight different morphing algorithms, to benchmark the proposed few-shot MAF (FS-MAF) method. Extensive experimental results show the outstanding performance of our fusion-based FS-MAF. The code and data will be publicly available at https://github.com/nz0001na/mad maf

    Ensemble of texture descriptors and classifiers for face recognition

    Get PDF
    Abstract Presented in this paper is a novel system for face recognition that works well in the wild and that is based on ensembles of descriptors that utilize different preprocessing techniques. The power of our proposed approach is demonstrated on two datasets: the FERET dataset and the Labeled Faces in the Wild (LFW) dataset. In the FERET datasets, where the aim is identification, we use the angle distance. In the LFW dataset, where the aim is to verify a given match, we use the Support Vector Machine and Similarity Metric Learning. Our proposed system performs well on both datasets, obtaining, to the best of our knowledge, one of the highest performance rates published in the literature on the FERET datasets. Particularly noteworthy is the fact that these good results on both datasets are obtained without using additional training patterns. The MATLAB source of our best ensemble approach will be freely available at https://www.dei.unipd.it/node/2357
    • …
    corecore