7,427 research outputs found

    Unsupervised High-level Feature Learning by Ensemble Projection for Semi-supervised Image Classification and Image Clustering

    Full text link
    This paper investigates the problem of image classification with limited or no annotations, but abundant unlabeled data. The setting exists in many tasks such as semi-supervised image classification, image clustering, and image retrieval. Unlike previous methods, which develop or learn sophisticated regularizers for classifiers, our method learns a new image representation by exploiting the distribution patterns of all available data for the task at hand. Particularly, a rich set of visual prototypes are sampled from all available data, and are taken as surrogate classes to train discriminative classifiers; images are projected via the classifiers; the projected values, similarities to the prototypes, are stacked to build the new feature vector. The training set is noisy. Hence, in the spirit of ensemble learning we create a set of such training sets which are all diverse, leading to diverse classifiers. The method is dubbed Ensemble Projection (EP). EP captures not only the characteristics of individual images, but also the relationships among images. It is conceptually simple and computationally efficient, yet effective and flexible. Experiments on eight standard datasets show that: (1) EP outperforms previous methods for semi-supervised image classification; (2) EP produces promising results for self-taught image classification, where unlabeled samples are a random collection of images rather than being from the same distribution as the labeled ones; and (3) EP improves over the original features for image clustering. The code of the method is available on the project page.Comment: 22 pages, 8 figure

    Robust Multiple Manifolds Structure Learning

    Full text link
    We present a robust multiple manifolds structure learning (RMMSL) scheme to robustly estimate data structures under the multiple low intrinsic dimensional manifolds assumption. In the local learning stage, RMMSL efficiently estimates local tangent space by weighted low-rank matrix factorization. In the global learning stage, we propose a robust manifold clustering method based on local structure learning results. The proposed clustering method is designed to get the flattest manifolds clusters by introducing a novel curved-level similarity function. Our approach is evaluated and compared to state-of-the-art methods on synthetic data, handwritten digit images, human motion capture data and motorbike videos. We demonstrate the effectiveness of the proposed approach, which yields higher clustering accuracy, and produces promising results for challenging tasks of human motion segmentation and motion flow learning from videos.Comment: ICML201

    Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization

    Full text link
    Image clustering is one of the most important computer vision applications, which has been extensively studied in literature. However, current clustering methods mostly suffer from lack of efficiency and scalability when dealing with large-scale and high-dimensional data. In this paper, we propose a new clustering model, called DEeP Embedded RegularIzed ClusTering (DEPICT), which efficiently maps data into a discriminative embedding subspace and precisely predicts cluster assignments. DEPICT generally consists of a multinomial logistic regression function stacked on top of a multi-layer convolutional autoencoder. We define a clustering objective function using relative entropy (KL divergence) minimization, regularized by a prior for the frequency of cluster assignments. An alternating strategy is then derived to optimize the objective by updating parameters and estimating cluster assignments. Furthermore, we employ the reconstruction loss functions in our autoencoder, as a data-dependent regularization term, to prevent the deep embedding function from overfitting. In order to benefit from end-to-end optimization and eliminate the necessity for layer-wise pretraining, we introduce a joint learning framework to minimize the unified clustering and reconstruction loss functions together and train all network layers simultaneously. Experimental results indicate the superiority and faster running time of DEPICT in real-world clustering tasks, where no labeled data is available for hyper-parameter tuning

    Local Regularization of Noisy Point Clouds: Improved Global Geometric Estimates and Data Analysis

    Full text link
    Several data analysis techniques employ similarity relationships between data points to uncover the intrinsic dimension and geometric structure of the underlying data-generating mechanism. In this paper we work under the model assumption that the data is made of random perturbations of feature vectors lying on a low-dimensional manifold. We study two questions: how to define the similarity relationship over noisy data points, and what is the resulting impact of the choice of similarity in the extraction of global geometric information from the underlying manifold. We provide concrete mathematical evidence that using a local regularization of the noisy data to define the similarity improves the approximation of the hidden Euclidean distance between unperturbed points. Furthermore, graph-based objects constructed with the locally regularized similarity function satisfy better error bounds in their recovery of global geometric ones. Our theory is supported by numerical experiments that demonstrate that the gain in geometric understanding facilitated by local regularization translates into a gain in classification accuracy in simulated and real data

    Clustering with Similarity Preserving

    Full text link
    Graph-based clustering has shown promising performance in many tasks. A key step of graph-based approach is the similarity graph construction. In general, learning graph in kernel space can enhance clustering accuracy due to the incorporation of nonlinearity. However, most existing kernel-based graph learning mechanisms is not similarity-preserving, hence leads to sub-optimal performance. To overcome this drawback, we propose a more discriminative graph learning method which can preserve the pairwise similarities between samples in an adaptive manner for the first time. Specifically, we require the learned graph be close to a kernel matrix, which serves as a measure of similarity in raw data. Moreover, the structure is adaptively tuned so that the number of connected components of the graph is exactly equal to the number of clusters. Finally, our method unifies clustering and graph learning which can directly obtain cluster indicators from the graph itself without performing further clustering step. The effectiveness of this approach is examined on both single and multiple kernel learning scenarios in several datasets

    Information-Maximization Clustering based on Squared-Loss Mutual Information

    Full text link
    Information-maximization clustering learns a probabilistic classifier in an unsupervised manner so that mutual information between feature vectors and cluster assignments is maximized. A notable advantage of this approach is that it only involves continuous optimization of model parameters, which is substantially easier to solve than discrete optimization of cluster assignments. However, existing methods still involve non-convex optimization problems, and therefore finding a good local optimal solution is not straightforward in practice. In this paper, we propose an alternative information-maximization clustering method based on a squared-loss variant of mutual information. This novel approach gives a clustering solution analytically in a computationally efficient way via kernel eigenvalue decomposition. Furthermore, we provide a practical model selection procedure that allows us to objectively optimize tuning parameters included in the kernel function. Through experiments, we demonstrate the usefulness of the proposed approach

    Effectiveness of self-supervised pre-training for speech recognition

    Full text link
    We compare self-supervised representation learning algorithms which either explicitly quantize the audio data or learn representations without quantization. We find the former to be more accurate since it builds a good vocabulary of the data through vq-wav2vec [1] to enable learning of effective representations in subsequent BERT training. Different to previous work, we directly fine-tune the pre-trained BERT models on transcribed speech using a Connectionist Temporal Classification (CTC) loss instead of feeding the representations into a task-specific model. We also propose a BERT-style model learning directly from the continuous audio data and compare pre-training on raw audio to spectral features. Fine-tuning a BERT model on 10 hour of labeled Librispeech data with a vq-wav2vec vocabulary is almost as good as the best known reported system trained on 100 hours of labeled data on testclean, while achieving a 25% WER reduction on test-other. When using only 10 minutes of labeled data, WER is 25.2 on test-other and 16.3 on test-clean. This demonstrates that self-supervision can enable speech recognition systems trained on a near-zero amount of transcribed data

    High-Fidelity Image Generation With Fewer Labels

    Full text link
    Deep generative models are becoming a cornerstone of modern machine learning. Recent work on conditional generative adversarial networks has shown that learning complex, high-dimensional distributions over natural images is within reach. While the latest models are able to generate high-fidelity, diverse natural images at high resolution, they rely on a vast quantity of labeled data. In this work we demonstrate how one can benefit from recent work on self- and semi-supervised learning to outperform the state of the art on both unsupervised ImageNet synthesis, as well as in the conditional setting. In particular, the proposed approach is able to match the sample quality (as measured by FID) of the current state-of-the-art conditional model BigGAN on ImageNet using only 10% of the labels and outperform it using 20% of the labels.Comment: Mario Lucic, Michael Tschannen, and Marvin Ritter contributed equally to this work. ICML 2019 camera-ready version. Code available at https://github.com/google/compare_ga

    Learning Discrete Representations via Information Maximizing Self-Augmented Training

    Full text link
    Learning discrete representations of data is a central machine learning task because of the compactness of the representations and ease of interpretation. The task includes clustering and hash learning as special cases. Deep neural networks are promising to be used because they can model the non-linearity of data and scale to large datasets. However, their model complexity is huge, and therefore, we need to carefully regularize the networks in order to learn useful representations that exhibit intended invariance for applications of interest. To this end, we propose a method called Information Maximizing Self-Augmented Training (IMSAT). In IMSAT, we use data augmentation to impose the invariance on discrete representations. More specifically, we encourage the predicted representations of augmented data points to be close to those of the original data points in an end-to-end fashion. At the same time, we maximize the information-theoretic dependency between data and their predicted discrete representations. Extensive experiments on benchmark datasets show that IMSAT produces state-of-the-art results for both clustering and unsupervised hash learning.Comment: To appear at ICML 201

    Graph Clustering with Dynamic Embedding

    Full text link
    Graph clustering (or community detection) has long drawn enormous attention from the research on web mining and information networks. Recent literature on this topic has reached a consensus that node contents and link structures should be integrated for reliable graph clustering, especially in an unsupervised setting. However, existing methods based on shallow models often suffer from content noise and sparsity. In this work, we propose to utilize deep embedding for graph clustering, motivated by the well-recognized power of neural networks in learning intrinsic content representations. Upon that, we capture the dynamic nature of networks through the principle of influence propagation and calculate the dynamic network embedding. Network clusters are then detected based on the stable state of such an embedding. Unlike most existing embedding methods that are task-agnostic, we simultaneously solve for the underlying node representations and the optimal clustering assignments in an end-to-end manner. To provide more insight, we theoretically analyze our interpretation of network clusters and find its underlying connections with two widely applied approaches for network modeling. Extensive experimental results on six real-world datasets including both social networks and citation networks demonstrate the superiority of our proposed model over the state-of-the-art
    corecore