1,218 research outputs found

    Filters and smoothers for self-exciting Markov modulated counting processes

    Full text link
    We consider a self-exciting counting process, the parameters of which depend on a hidden finite-state Markov chain. We derive the optimal filter and smoother for the hidden chain based on observation of the jump process. This filter is in closed form and is finite dimensional. We demonstrate the performance of this filter both with simulated data, and by analysing the `flash crash' of 6th May 2010 in this framework

    Intelligent control of nonlinear systems with actuator saturation using neural networks

    Get PDF
    Common actuator nonlinearities such as saturation, deadzone, backlash, and hysteresis are unavoidable in practical industrial control systems, such as computer numerical control (CNC) machines, xy-positioning tables, robot manipulators, overhead crane mechanisms, and more. When the actuator nonlinearities exist in control systems, they may exhibit relatively large steady-state tracking error or even oscillations, cause the closed-loop system instability, and degrade the overall system performance. Proportional-derivative (PD) controller has observed limit cycles if the actuator nonlinearity is not compensated well. The problems are particularly exacerbated when the required accuracy is high, as in micropositioning devices. Due to the non-analytic nature of the actuator nonlinear dynamics and the fact that the exact actuator nonlinear functions, namely operation uncertainty, are unknown, the saturation compensation research is a challenging and important topic with both theoretical and practical significance. Adaptive control can accommodate the system modeling, parametric, and environmental structural uncertainties. With the universal approximating property and learning capability of neural network (NN), it is appealing to develop adaptive NN-based saturation compensation scheme without explicit knowledge of actuator saturation nonlinearity. In this dissertation, intelligent anti-windup saturation compensation schemes in several scenarios of nonlinear systems are investigated. The nonlinear systems studied within this dissertation include the general nonlinear system in Brunovsky canonical form, a second order multi-input multi-output (MIMO) nonlinear system such as a robot manipulator, and an underactuated system-flexible robot system. The abovementioned methods assume the full states information is measurable and completely known. During the NN-based control law development, the imposed actuator saturation is assumed to be unknown and treated as the system input disturbance. The schemes that lead to stability, command following and disturbance rejection is rigorously proved, and verified using the nonlinear system models. On-line NN weights tuning law, the overall closed-loop performance, and the boundedness of the NN weights are rigorously derived and guaranteed based on Lyapunov approach. The NN saturation compensator is inserted into a feedforward path. The simulation conducted indicates that the proposed schemes can effectively compensate for the saturation nonlinearity in the presence of system uncertainty

    Adaptive Control

    Get PDF
    Adaptive control has been a remarkable field for industrial and academic research since 1950s. Since more and more adaptive algorithms are applied in various control applications, it is becoming very important for practical implementation. As it can be confirmed from the increasing number of conferences and journals on adaptive control topics, it is certain that the adaptive control is a significant guidance for technology development.The authors the chapters in this book are professionals in their areas and their recent research results are presented in this book which will also provide new ideas for improved performance of various control application problems

    Wireless industrial intelligent controller for a non-linear system

    Get PDF
    Modern neural network (NN) based control schemes have surmounted many of the limitations found in the traditional control approaches. Nevertheless, these modern control techniques have only recently been introduced for use on high-specification Programmable Logic Controllers (PLCs) and usually at a very high cost in terms of the required software and hardware. This ‗intelligent‘ control in the sector of industrial automation, specifically on standard PLCs thus remains an area of study that is open to further research and development. The research documented in this thesis examined the effectiveness of linear traditional control schemes such as Proportional Integral Derivative (PID), Lead and Lead-Lag control, in comparison to non-linear NN based control schemes when applied on a strongly non-linear platform. To this end, a mechatronic-type balancing system, namely, the Ball-on-Wheel (BOW) system was designed, constructed and modelled. Thereafter various traditional and intelligent controllers were implemented in order to control the system. The BOW platform may be taken to represent any single-input, single-output (SISO) non-linear system in use in the real world. The system makes use of current industrial technology including a standard PLC as the digital computational platform, a servo drive and wireless access for remote control. The results gathered from the research revealed that NN based control schemes (i.e. Pure NN and NN-PID), although comparatively slower in response, have greater advantages over traditional controllers in that they are able to adapt to external system changes as well as system non-linearity through a process of learning. These controllers also reduce the guess work that is usually involved with the traditional control approaches where cumbersome modelling, linearization or manual tuning is required. Furthermore, the research showed that online-learning adaptive traditional controllers such as the NN-PID controller which maintains the best of both the intelligent and traditional controllers may be implemented easily and with minimum expense on standard PLCs

    Review of dynamic positioning control in maritime microgrid systems

    Get PDF
    For many offshore activities, including offshore oil and gas exploration and offshore wind farm construction, it is essential to keep the position and heading of the vessel stable. The dynamic positioning system is a progressive technology, which is extensively used in shipping and other maritime structures. To maintain the vessels or platforms from displacement, its thrusters are used automatically to control and stabilize the position and heading of vessels in sea state disturbances. The theory of dynamic positioning has been studied and developed in terms of control techniques to achieve greater accuracy and reduce ship movement caused by environmental disturbance for more than 30 years. This paper reviews the control strategies and architecture of the DPS in marine vessels. In addition, it suggests possible control principles and makes a comparison between the advantages and disadvantages of existing literature. Some details for future research on DP control challenges are discussed in this paper

    Development of Motion Control Systems for Hydraulically Actuated Cranes with Hanging Loads

    Get PDF
    Automation has been used in industrial processes for several decades to increase efficiency and safety. Tasks that are either dull, dangerous, or dirty can often be performed by machines in a reliable manner. This may provide a reduced risk to human life, and will typically give a lower economic cost. Industrial robots are a prime example of this, and have seen extensive use in the automotive industry and manufacturing plants. While these machines have been employed in a wide variety of industries, heavy duty lifting and handling equipment such as hydraulic cranes have typically been manually operated. This provides an opportunity to investigate and develop control systems to push lifting equipment towards the same level of automation found in the aforementioned industries. The use of winches and hanging loads on cranes give a set of challenges not typically found on robots, which requires careful consideration of both the safety aspect and precision of the pendulum-like motion. Another difference from industrial robots is the type of actuation systems used. While robots use electric motors, the cranes discussed in this thesis use hydraulic cylinders. As such, the dynamics of the machines and the control system designmay differ significantly. In addition, hydraulic cranes may experience significant deflection when lifting heavy loads, arising from both structural flexibility and the compressibility of the hydraulic fluid. The work presented in this thesis focuses on motion control of hydraulically actuated cranes. Motion control is an important topic when developing automation systems, as moving from one position to another is a common requirement for automated lifting operations. A novel path controller operating in actuator space is developed, which takes advantage of the load-independent flow control valves typically found on hydraulically actuated cranes. By operating in actuator space the motion of each cylinder is inherently minimized. To counteract the pendulum-like motion of the hanging payload, a novel anti-swing controller is developed and experimentally verified. The anti-swing controller is able to suppress the motion from the hanging load to increase safety and precision. To tackle the challenges associated with the flexibility of the crane, a deflection compensator is developed and experimentally verified. The deflection compensator is able to counteract both the static deflection due to gravity and dynamic de ection due to motion. Further, the topic of adaptive feedforward control of pressure compensated cylinders has been investigated. A novel adaptive differential controller has been developed and experimentally verified, which adapts to system uncertainties in both directions of motion. Finally, the use of electro-hydrostatic actuators for motion control of cranes has been investigated using numerical time domain simulations. A novel concept is proposed and investigated using simulations.publishedVersio

    Design of Power System Stabilizer

    Get PDF
    A power system stabilizer (PSS) installed in the excitation system of the synchronous generator improves the small-signal power system stability by damping out low frequency oscillations in the power system. It does that by providing supplementary perturbation signals in a feedback path to the alternator excitation system. In our project we review different conventional PSS design (CPSS) techniques along with modern adaptive neuro-fuzzy design techniques. We adapt a linearized single-machine infinite bus model for design and simulation of the CPSS and the voltage regulator (AVR). We use 3 different input signals in the feedback (PSS) path namely, speed variation(w), Electrical Power (Pe), and integral of accelerating power (Pe*w), and review the results in each case. For simulations, we use three different linear design techniques, namely, root-locus design, frequency-response design, and pole placement design; and the preferred non-linear design technique is the adaptive neuro-fuzzy based controller design. The MATLAB package with Control System Toolbox and SIMULINK is used for the design and simulations

    PID control system analysis and design

    Get PDF
    With its three-term functionality offering treatment of both transient and steady-state responses, proportional-integral-derivative (PID) control provides a generic and efficient solution to realworld control problems. The wide application of PID control has stimulated and sustained research and development to "get the best out of PID", and "the search is on to find the next key technology or methodology for PID tuning". This article presents remedies for problems involving the integral and derivative terms. PID design objectives, methods, and future directions are discussed. Subsequently, a computerized, simulation-based approach is presented, together with illustrative design results for first-order, higher order, and nonlinear plants. Finally, we discuss differences between academic research and industrial practice, so as to motivate new research directions in PID control
    corecore