200 research outputs found

    Advanced automatic mixing tools for music

    Get PDF
    PhDThis thesis presents research on several independent systems that when combined together can generate an automatic sound mix out of an unknown set of multi‐channel inputs. The research explores the possibility of reproducing the mixing decisions of a skilled audio engineer with minimal or no human interaction. The research is restricted to non‐time varying mixes for large room acoustics. This research has applications in dynamic sound music concerts, remote mixing, recording and postproduction as well as live mixing for interactive scenes. Currently, automated mixers are capable of saving a set of static mix scenes that can be loaded for later use, but they lack the ability to adapt to a different room or to a different set of inputs. In other words, they lack the ability to automatically make mixing decisions. The automatic mixer research depicted here distinguishes between the engineering mixing and the subjective mixing contributions. This research aims to automate the technical tasks related to audio mixing while freeing the audio engineer to perform the fine‐tuning involved in generating an aesthetically‐pleasing sound mix. Although the system mainly deals with the technical constraints involved in generating an audio mix, the developed system takes advantage of common practices performed by sound engineers whenever possible. The system also makes use of inter‐dependent channel information for controlling signal processing tasks while aiming to maintain system stability at all times. A working implementation of the system is described and subjective evaluation between a human mix and the automatic mix is used to measure the success of the automatic mixing tools

    Independent Component Analysis in a convoluted world

    Get PDF

    Advanced OFDM systems for terrestrial multimedia links

    Get PDF
    Recently, there has been considerable discussion about new wireless technologies and standards able to achieve high data rates. Due to the recent advances of digital signal processing and Very Large Scale Integration (VLSI) technologies, the initial obstacles encountered for the implementation of Orthogonal Frequency Division Multiplexing (OFDM) modulation schemes, such as massive complex multiplications and high speed memory accesses, do not exist anymore. OFDM offers strong multipath protection due to the insertion of the guard interval; in particular, the OFDM-based DVB-T standard had proved to offer excellent performance for the broadcasting of multimedia streams with bitrates over ten megabits per second in difficult terrestrial propagation channels, for fixed and portable applications. Nevertheless, for mobile scenarios, improving the receiver design is not enough to achieve error-free transmission especially in presence of deep shadow and multipath fading and some modifications of the standard can be envisaged. To address long and medium range applications like live mobile wireless television production, some further modifications are required to adapt the modulated bandwidth and fully exploit channels up to 24MHz wide. For these reasons, an extended OFDM system is proposed that offers variable bandwidth, improved protection to shadow and multipath fading and enhanced robustness thanks to the insertion of deep time-interleaving coupled with a powerful turbo codes concatenated error correction scheme. The system parameters and the receiver architecture have been described in C++ and verified with extensive simulations. In particular, the study of the receiver algorithms was aimed to achieve the optimal tradeoff between performances and complexity. Moreover, the modulation/demodulation chain has been implemented in VHDL and a prototype system has been manufactured. Ongoing field trials are demonstrating the ability of the proposed system to successfully overcome the impairments due to mobile terrestrial channels, like multipath and shadow fading. For short range applications, Time-Division Multiplexing (TDM) is an efficient way to share the radio resource between multiple terminals. The main modulation parameters for a TDM system are discussed and it is shown that the 802.16a TDM OFDM physical layer fulfills the application requirements; some practical examples are given. A pre-distortion method is proposed that exploit the reciprocity of the radio channel to perform a partial channel inversion achieving improved performances with no modifications of existing receivers

    Enhanced coding, clock recovery and detection for a magnetic credit card

    Get PDF
    Merged with duplicate record 10026.1/2299 on 03.04.2017 by CS (TIS)This thesis describes the background, investigation and construction of a system for storing data on the magnetic stripe of a standard three-inch plastic credit in: inch card. Investigation shows that the information storage limit within a 3.375 in by 0.11 in rectangle of the stripe is bounded to about 20 kBytes. Practical issues limit the data storage to around 300 Bytes with a low raw error rate: a four-fold density increase over the standard. Removal of the timing jitter (that is prob-' ably caused by the magnetic medium particle size) would increase the limit to 1500 Bytes with no other system changes. This is enough capacity for either a small digital passport photograph or a digitized signature: making it possible to remove printed versions from the surface of the card. To achieve even these modest gains has required the development of a new variable rate code that is more resilient to timing errors than other codes in its efficiency class. The tabulation of the effects of timing errors required the construction of a new code metric and self-recovering decoders. In addition, a new method of timing recovery, based on the signal 'snatches' has been invented to increase the rapidity with which a Bayesian decoder can track the changing velocity of a hand-swiped card. The timing recovery and Bayesian detector have been integrated into one computation (software) unit that is self-contained and can decode a general class of (d, k) constrained codes. Additionally, the unit has a signal truncation mechanism to alleviate some of the effects of non-linear distortion that are present when a magnetic card is read with a magneto-resistive magnetic sensor that has been driven beyond its bias magnetization. While the storage density is low and the total storage capacity is meagre in comparison with contemporary storage devices, the high density card may still have a niche role to play in society. Nevertheless, in the face of the Smart card its long term outlook is uncertain. However, several areas of coding and detection under short-duration extreme conditions have brought new decoding methods to light. The scope of these methods is not limited just to the credit card

    Tecnologias coerentes para redes ópticas flexíveis

    Get PDF
    Next-generation networks enable a broad range of innovative services with the best delivery by utilizing very dense wired/wireless networks. However, the development of future networks will require several breakthroughs in optical networks such as high-performance optical transceivers to support a very-high capacity optical network as well as optimization of the network concept, ensuring a dramatic reduction of the cost per bit. At the same time, all of the optical network segments (metro, access, long-haul) need new technology options to support high capacity, spectral efficiency and data-rate flexibility. Coherent detection offers an opportunity by providing very high sensitivity and supporting high spectral efficiency. Coherent technology can still be combined with polarization multiplexing. Despite the increased cost and complexity, the migration to dual-polarization coherent transceivers must be considered, as it enables to double the spectral efficiency. These dual-polarization systems require an additional digital signal processing (DSP) subsystem for polarization demultiplexing. This work seeks to provide and characterize cost-effective novel coherent transceivers for the development of new generation practical, flexible and high capacity transceivers for optical metro-access and data center interconnects. In this regard, different polarization demultiplexing (PolDemux) algorithms, as well as adaptive Stokes will be considered. Furthermore, low complexity and modulation format-agnostic DSP techniques based on adaptive Stokes PolDemux for flexible and customizable optical coherent systems will be proposed. On this subject, the performance of the adaptive Stokes algorithm in an ultra-dense wavelength division multiplexing (U-DWDM) system will be experimentally evaluated, in offline and real-time operations over a hybrid optical-wireless link. In addition, the efficiency of this PolDemux algorithm in a flexible optical metro link based on Nyquist pulse shaping U-DWDM system and hybrid optical signals will be assessed. Moreover, it is of great importance to find a transmission technology that enables to apply the Stokes PolDemux for long-haul transmission systems and data center interconnects. In this work, it is also proposed a solution based on the use of digital multi-subcarrier multiplexing, which improve the performance of long-haul optical systems, without increasing substantially, their complexity and cost.As redes de telecomunicações futuras permitirão uma ampla gama de serviços inovadores e com melhor desempenho. No entanto, o desenvolvimento das futuras redes implicará vários avanços nas redes de fibra ótica, como transcetores óticos de alto desempenho capazes de suportar ligações de muito elevada capacidade, e a otimização da estrutura da rede, permitindo uma redução drástica do custo por bit transportado. Simultaneamente, todos os segmentos de rede ótica (metropolitanas, acesso e longo alcance) necessitam de novas opções tecnológicas para suportar uma maior capacidade, maior eficiência espetral e flexibilidade. Neste contexto, a deteção coerente surge como uma oportunidade, fornecendo alta sensibilidade e elevada eficiência espetral. A tecnologia de deteção coerente pode ainda ser associada à multiplexação na polarização. Apesar de um potencial aumento ao nível do custo e da complexidade, a migração para transcetores coerentes de dupla polarização deve ser ponderada, pois permite duplicar a eficiência espetral. Esses sistemas de dupla polarização requerem um subsistema de processamento digital de sinal (DSP) adicional para desmultiplexagem da polarização. Este trabalho procura fornecer e caracterizar novos transcetores coerentes de baixo custo para o desenvolvimento de uma nova geração de transcetores mais práticos, flexíveis e de elevada capacidade, para interconexões óticas ao nível das futuras redes de acesso e metro. Assim, serão analisados diferentes algoritmos para a desmultiplexagem da polarização, incluindo uma abordagem adaptativa baseada no espaço de Stokes. Além disso, são propostas técnicas de DSP independentes do formato de modulação e de baixa complexidade baseadas na desmultiplexagem de Stokes adaptativa para sistemas óticos coerentes flexíveis. Neste contexto, o desempenho do algoritmo adaptativo de desmultiplexagem na polarização baseado no espaço de Stokes é avaliado experimentalmente num sistema U-DWDM, tanto em análises off-line como em tempo real, considerando um percurso ótico hibrido que combina um sistema de transmissão suportado por fibra e outro em espaço livre. Foi ainda analisada a eficiência do algoritmo de desmultiplexagem na polarização numa rede ótica de acesso flexível U-DWDM com formatação de pulso do tipo Nyquist. Neste trabalho foi ainda analisada a aplicação da técnica de desmultiplexagem na polarização baseada no espaço de Stokes para sistemas de longo alcance. Assim, foi proposta uma solução de aplicação baseada no uso da multiplexagem digital de múltiplas sub-portadoras, tendo-se demonstrado uma melhoria na eficiência do desempenho dos sistemas óticos de longo alcance, sem aumentar significativamente a respetiva complexidade e custo.Programa Doutoral em Engenharia Eletrotécnic
    corecore