135 research outputs found

    Event-Based Sampling Algorithm for Setpoint Tracking Using a State-Feedback Controller

    Get PDF
    International audienceEvent-based control techniques are investigated for output reference tracking in the case of linear time-invariant systems. In event-based control, the controller remains at rest if the system is behaving according to some predefined conditions, the feedback loop being closed only when the system states violate these conditions. In this work a reference system, which consists in the continuously-controlled version of the system under study, is employed. Based on the difference between the state of the event-triggered system and that of the reference system, we define a Lyapunov-like function, and show that if we can keep this function confined to a certain region, the tracking error would also be bounded. The trespassing of this function outside of the desired region is used as an event-triggering condition

    Self-triggered Stabilization of Contracting Systems under Quantization

    Full text link
    We propose self-triggered control schemes for nonlinear systems with quantized state measurements. Our focus lies on scenarios where both the controller and the self-triggering mechanism receive only the quantized state measurement at each sampling time. We assume that the ideal closed-loop system without quantization or self-triggered sampling is contracting. Moreover, a growth rate of the open-loop system is assumed to be known. We present two control strategies that yield the closed-loop stability without Zeno behavior. The first strategy is implemented under logarithmic quantization and imposes no time-triggering condition other than setting an upper bound on inter-sampling times. The second one is a joint design of zooming quantization and periodic self-triggered sampling, where the adjustable zoom parameter for quantization changes based on inter-sampling times and is also used for the threshold of self-triggered sampling. In both strategies, we employ a trajectory-based approach for stability analysis, where contraction theory plays a key role.Comment: 26 pages, 10 figure

    Stability Analysis of Infinite-dimensional Event-triggered and Self-triggered Control Systems with Lipschitz Perturbations

    Full text link
    This paper addresses the following question: "Suppose that a state-feedback controller stabilizes an infinite-dimensional linear continuous-time system. If we choose the parameters of an event/self-triggering mechanism appropriately, is the event/self-triggered control system stable under all sufficiently small nonlinear Lipschitz perturbations?" We assume that the stabilizing feedback operator is compact. This assumption is used to guarantee the strict positiveness of inter-event times and the existence of the mild solution of evolution equations with unbounded control operators. First, for the case where the control operator is bounded, we show that the answer to the above question is positive, giving a sufficient condition for exponential stability, which can be employed for the design of event/self-triggering mechanisms. Next, we investigate the case where the control operator is unbounded and prove that the answer is still positive for periodic event-triggering mechanisms.Comment: 29 pages, 9 figure

    Event-triggered control for rational and Lur’e type nonlinear systems

    Get PDF
    In the present work, the design of event-triggered controllers for two classes of nonlinear systems is addressed: rational systems and Lur’e type systems. Lyapunov theory techniques are used in both cases to derive asymptotic stability conditions in the form of linear matrix inequalities that are then used in convex optimization problems as means of computing the control system parameters aiming at a reduction of the number of events generated. In the context of rational systems, state-feedback control is considered and differentialalgebraic representations are used as means to obtain tractable stability conditions. An event-triggering strategy which uses weighting matrices to strive for less events is proposed and then it is proven that this strategy does not lead to Zeno behavior. In the case of Lur’e systems, observer-based state-feedback is addressed with event generators that have access only to the system output and observed state, but it imposes the need of a dwell-time, i.e. a time interval after each event where the trigger condition is not evaluated, to cope with Zeno behavior. Two distinct approaches, exact time-discretization and looped-functional techniques, are considered to ensure asymptotic stability in the presence of the dwell-time. For both system classes, emulation design and co-design are addressed. In the emulation design context, the control law (and the observer gains, when appropriate) are given and the task is to compute the event generator parameters. In the co-design context, the event generator and the control law or the observer can be simultaneously designed. Numerical examples are presented to illustrate the application of the proposed methods.Neste trabalho é abordado o projeto de controladores baseados em eventos para duas classes de sistemas não lineares: sistemas racionais e sistemas tipo Lur’e. Técnicas da teoria de Lyapunov são usadas em ambos os casos para derivar condições de estabilidade assintótica na forma de inequações matriciais lineares. Tais condições são então utilizadas em problemas de otimização convexa como meio de calcular os parâmetros do sistema de controle, visando uma redução no número de eventos gerados. No contexto de sistemas racionais, realimentação de estados é considerada e representações algébrico-diferenciais são usadas como meio de obter condições de estabilidade tratáveis computacionalmente. Uma estratégia de disparo de eventos que usa uma medida de erro ponderado através de matrizes definidas positivas é proposta e é demonstrado que tal estratégia não gera comportamento de Zenão. No caso de sistemas tipo Lur’e, considera-se o caso de controladores com restrições de informações, a saber, com acesso apenas às saídas do sistema. Um observador de estados é então utilizado para recuperar a informação faltante. Neste contexto, é necessária a introdução de um tempo de espera (dwell time, em inglês) para garantir a inexistência de comportamento de Zenão. Todavia, a introdução do tempo de espera apresenta um desafio adicional na garantia de estabilidade que é tratado neste trabalho considerando duas técnicas possíveis: a discretização exata do sistema e o uso de looped-functionals (funcionais em laço, em uma tradução livre). Para ambas classes de sistemas, são tratados os problemas de projeto por emulação e co-design (projeto simultâneo, em uma tradução livre). No projeto por emulação, a lei de controle (e os ganhos do observador, quando apropriado) são dados a priori e a tarefa é projetar os parâmetros do gerador de eventos. No caso do co-design, o gerador de eventos e a lei de controle ou o observador são projetados simultaneamente. Exemplos numéricos são usados para ilustrar a aplicação dos métodos propostos

    Event-triggered near optimal adaptive control of interconnected systems

    Get PDF
    Increased interest in complex interconnected systems like smart-grid, cyber manufacturing have attracted researchers to develop optimal adaptive control schemes to elicit a desired performance when the complex system dynamics are uncertain. In this dissertation, motivated by the fact that aperiodic event sampling saves network resources while ensuring system stability, a suite of novel event-sampled distributed near-optimal adaptive control schemes are introduced for uncertain linear and affine nonlinear interconnected systems in a forward-in-time and online manner. First, a novel stochastic hybrid Q-learning scheme is proposed to generate optimal adaptive control law and to accelerate the learning process in the presence of random delays and packet losses resulting from the communication network for an uncertain linear interconnected system. Subsequently, a novel online reinforcement learning (RL) approach is proposed to solve the Hamilton-Jacobi-Bellman (HJB) equation by using neural networks (NNs) for generating distributed optimal control of nonlinear interconnected systems using state and output feedback. To relax the state vector measurements, distributed observers are introduced. Next, using RL, an improved NN learning rule is derived to solve the HJB equation for uncertain nonlinear interconnected systems with event-triggered feedback. Distributed NN identifiers are introduced both for approximating the uncertain nonlinear dynamics and to serve as a model for online exploration. Next, the control policy and the event-sampling errors are considered as non-cooperative players and a min-max optimization problem is formulated for linear and affine nonlinear systems by using zero-sum game approach for simultaneous optimization of both the control policy and the event based sampling instants. The net result is the development of optimal adaptive event-triggered control of uncertain dynamic systems --Abstract, page iv

    Utility Driven Sampled Data Control Under Imperfect Information

    Get PDF
    Computer based control systems, which are ubiquitous today, are essentially sampled data control systems. In the traditional time-triggered control systems, the sampling period is conservatively chosen, based on a worst case analysis. However, in many control systems, such as those implemented on embedded computers or over a network, parsimonious sampling and computation is helpful. In this context, state/data based aperiodic utility driven sampled data control systems are a promising alternative. This dissertation is concerned with the design of utility driven event-triggers in certain classes of problems where the information available to the triggering mechanisms is imperfect. In the first part, the problem of utility driven event-triggering under partial state information is considered - specifically in the context of (i) decentralized sensing and (ii) dynamic output feedback control. In the case of full state feedback, albeit with decentralized sensing, methods are developed for designing local and asynchronous event-triggers for asymptotic stabilization of an equilibrium point of a general nonlinear system. In the special case of Linear Time Invariant (LTI) systems, the developed method also holds for dynamic output feedback control, which extends naturally to control over Sensor-Controller-Actuator Networks (SCAN), wherein even the controller is decentralized. The second direction that is pursued in this dissertation is that of parsimonious utility driven sampling not only in time but also in space. A methodology of co-designing an event-trigger and a quantizer of the sampled data controller is developed. Effectively, the proposed methodology provides a discrete-event controller for asymptotic stabilization of an equilibrium point of a general continuous-time nonlinear system. In the last part, a method is proposed for designing utility driven event-triggers for the problem of trajectory tracking in general nonlinear systems, where the source of imperfect information is the exogenous reference inputs. Then, specifically in the context of robotic manipulators we develop utility driven sampled data implementation of an adaptive controller for trajectory tracking, wherein imperfect knowledge of system parameters is an added complication
    • …
    corecore