1,248 research outputs found

    A comparison of self-timed design using FPGA, CMOS, and GaAs technologies

    Get PDF
    Journal ArticleAsynchronous or self-timed systems that do not rely on U global clock to keep system components synchronized can offer significant advantages over traditional clocked circuits in a variety of applications. One advantage is that because of the separation of timing, from, functionality in these systems, the same circuit may he implemented in U variety of technologies without modification to the circuit. In this paper we explore one approach to self-timed design and describe implementations of an example circuit in three different technologies. The simple routing chip used us the example has been described by writing U program in OCCAM, translated into U circuit consisting of a small set of basic modules, and implemented using Actel FPGA, CMOS, and GuAs technologies

    SpinLink: An interconnection system for the SpiNNaker biologically inspired multi-computer

    No full text
    SpiNNaker is a large-scale biologically-inspired multi-computer designed to model very heavily distributed problems, with the flagship application being the simulation of large neural networks. The project goal is to have one million processors included in a single machine, which consequently span many thousands of circuit boards. A computer of this scale imposes large communication requirements between these boards, and requires an extensible method of connecting to external equipment such as sensors, actuators and visualisation systems. This paper describes two systems that can address each of these problems.Firstly, SpinLink is a proposed method of connecting the SpiNNaker boards by using time-division multiplexing (TDM) to allow eight SpiNNaker links to run at maximum bandwidth between two boards. SpinLink will be deployed on Spartan-6 FPGAs and uses a locally generated clock that can be paused while the asynchronous links from SpiNNaker are sending data, thus ensuring a fast and glitch-free response. Secondly, SpiNNterceptor is a separate system, currently in the early stages of design, that will build upon SpinLink to address the important external I/O issues faced by SpiNNaker. Specifically, spare resources in the FPGAs will be used to implement the debugging and I/O interfacing features of SpiNNterceptor

    Neuro-inspired system for real-time vision sensor tilt correction

    Get PDF
    Neuromorphic engineering tries to mimic biological information processing. Address-Event-Representation (AER) is an asynchronous protocol for transferring the information of spiking neuro-inspired systems. Currently AER systems are able sense visual and auditory stimulus, to process information, to learn, to control robots, etc. In this paper we present an AER based layer able to correct in real time the tilt of an AER vision sensor, using a high speed algorithmic mapping layer. A codesign platform (the AER-Robot platform), with a Xilinx Spartan 3 FPGA and an 8051 USB microcontroller, has been used to implement the system. Testing it with the help of the USBAERmini2 board and the jAER software.Junta de Andalucía P06-TIC-01417Ministerio de Educación y Ciencia TEC2006-11730-C03-02Ministerio de Ciencia e Innovación TEC2009-10639-C04-0
    corecore