504 research outputs found

    DFT and BIST of a multichip module for high-energy physics experiments

    Get PDF
    Engineers at Politecnico di Torino designed a multichip module for high-energy physics experiments conducted on the Large Hadron Collider. An array of these MCMs handles multichannel data acquisition and signal processing. Testing the MCM from board to die level required a combination of DFT strategie

    Environmental-Based Characterization of SoC-Based Instrumentation Systems for Stratified Testing

    Get PDF
    This paper proposes a novel environmental-based method for evaluating the good yield rate (GYR) of systems-on-chip (SoC) during fabrication. Testing and yield evaluation at high confidence are two of the most critical issues for the success of SoC as a viable technology. The proposed method relies on different features of fabrication, which are quantified by the so-called Fabrication environmental parameters (EPs). EPs can be highly correlated to the yield, so they are analyzed using statistical methods to improve its accuracy and ultimately direct the test process to an efficient execution. The novel contributions of the proposed method are: 1) to establish an adequate theoretical foundation for understanding the fabrication process of SoCs together with an assurance of the yield at a high confidence level and 2) to ultimately provide a realistic approach to SoC testing with an accurate yield evaluation. Simulations are provided to demonstrate that the proposed method significantly improves the confidence interval of the estimated yield as compared with existing testing methodologies such as random testing (RT)

    A novel partial reconfiguration methodology for FPGAs of multichip systems

    Get PDF
    A number of SRAM-based field programmable gate arrays (FPGAs) allow for partial reconfiguration (PR). Partial reconfiguration can be used to maximize the resource utilization in these FPGAs. Any large design usually consists of many modular features that are never used all concurrently. An FPGA does not need to implement all these features at the same time provided that it can be reconfigured in a reasonable amount of time to implement the features that can be used simultaneously. The use of partial reconfiguration is ideal in this case, since it allows for just the features that are no longer needed to be replaced by the newly required features. Current methodologies use both external and self partial reconfiguration for this purpose. On mature multichip (MC) systems that have not made use of the PR features of their SRAM-based FPGA(s), however, these methodologies would require changes in the existing FPGA configuration protocol and/or associated hardware outside the array. This thesis presents a novel methodology that makes PR features available to these systems for the purpose of maximizing their FPGA resources without the modifications required by the current methodologies. The proposed methodology reuses an existing data interface to send the PR data to the array and directs this data to the FPGA’s internal configuration port. A prototype of this methodology is demonstrated on a commercial color space conversion (CSC) engine design using two Xilinx Virtex-II Pro FPGAs. In addition, the effectiveness of the proposed methodology is quantified by comparing the FPGA resource utilization of the original CSC engine design and that of the partial reconfigurable prototype above. Finally, since the application of partial reconfiguration inherently adds latency to the output of any design, the effects of the proposed methodology on the performance of the CSC engine are also studied and reported. This information will show that reconfiguring and loading the prototyped CSC engine in addition to processing a full image in it takes 683ms, which is within the target of one second

    Modeling and analysis of semiconductor manufacturing processes using petri nets

    Get PDF
    This thesis addresses the issues in modeling and analysis of multichip module (MCM) manufacturing processes using Petri nets. Building such graphical and mathematical models is a crucial step to understand MCM technologies and to enhance their application scope. In this thesis, the application of Petri nets is presented with top-down and bottom-up approaches. The theory of Petri nets is summarized with its basic notations and properties at first. After that, the capability of calculating and analyzing Petri nets with deterministic timing information is extended to meet the requirements of the MCM models. Then, using top-down refining and system decomposition, MCM models are built from an abstract point to concrete systems with timing information. In this process, reduction theory based on a multiple-input-single-output modules for deterministic Petri nets is applied to analyze the cycle time of Petri net models. Besides, this thesis is of significance in its use of the reduction theory which is derived for timed marked graphs - an important class of Petri nets

    Materials for high-density electronic packaging and interconnection

    Get PDF
    Electronic packaging and interconnections are the elements that today limit the ultimate performance of advanced electronic systems. Materials in use today and those becoming available are critically examined to ascertain what actions are needed for U.S. industry to compete favorably in the world market for advanced electronics. Materials and processes are discussed in terms of the final properties achievable and systems design compatibility. Weak points in the domestic industrial capability, including technical, industrial philosophy, and political, are identified. Recommendations are presented for actions that could help U.S. industry regain its former leadership position in advanced semiconductor systems production

    The Development and Packaging of a High-Density, Three-Phase, Silicon Carbide (SiC) Motor Drive

    Get PDF
    Technology advances within the power electronics field are resulting in systems characterized by higher operating efficiencies, reduced footprint, minimal form factor, and decreasing mass. In particular, these attributes and characteristics are being inserted into numerous consumer applications, such as light-emitting diode lighting, compact fluorescent lighting, smart phones, and tablet PCs, to industrial applications that include hybrid, electric, and plug-in electric vehicles and more electric aircraft. To achieve the increase in energy efficiency and significant reduction in size and mass of these systems, power semiconductor device manufacturers are developing silicon carbide (SiC) semiconductor technology. In this dissertation, the author discusses the design, development, packaging, and fabrication of the world\u27s first multichip power module (MCPM) that integrates SiC power transistors with silicon-on-insulator (SOI) integrated circuits. The fabricated MCPM prototype is a 4 kW, three-phase inverter that operates at temperatures in excess of 250 °C. The integration of high-temperature metal-oxide semiconductor (HTMOS) SOI bare die control components with SiC power JFET bare die into a single compact module are presented in this work. The high-temperature operation of SiC switches allows for increased power density over silicon electronics by an order of magnitude, leading to highly miniaturized power converters. This dissertation is organized into a compilation of publications written by the author over the course of his Ph.D. work. The work presented throughout these publications covers the challenges associated with power electronics miniaturization and packaging including high-power density, high-temperature, and high-efficiency operation of the power electronic system under study

    Ultra low power CMOS technology

    Get PDF
    This paper discusses the motivation, opportunities, and problems associated with implementing digital logic at very low voltages, including the challenge of making use of the available real estate in 3D multichip modules, energy requirements of very large neural networks, energy optimization metrics and their impact on system design, modeling problems, circuit design constraints, possible fabrication process modifications to improve performance, and barriers to practical implementation

    Architecting a One-to-many Traffic-Aware and Secure Millimeter-Wave Wireless Network-in-Package Interconnect for Multichip Systems

    Get PDF
    With the aggressive scaling of device geometries, the yield of complex Multi Core Single Chip(MCSC) systems with many cores will decrease due to the higher probability of manufacturing defects especially, in dies with a large area. Disintegration of large System-on-Chips(SoCs) into smaller chips called chiplets has shown to improve the yield and cost of complex systems. Therefore, platform-based computing modules such as embedded systems and micro-servers have already adopted Multi Core Multi Chip (MCMC) architectures overMCSC architectures. Due to the scaling of memory intensive parallel applications in such systems, data is more likely to be shared among various cores residing in different chips resulting in a significant increase in chip-to-chip traffic, especially one-to-many traffic. This one-to-many traffic is originated mainly to maintain cache-coherence between many cores residing in multiple chips. Besides, one-to-many traffics are also exploited by many parallel programming models, system-level synchronization mechanisms, and control signals. How-ever, state-of-the-art Network-on-Chip (NoC)-based wired interconnection architectures do not provide enough support as they handle such one-to-many traffic as multiple unicast trafficusing a multi-hop MCMC communication fabric. As a result, even a small portion of such one-to-many traffic can significantly reduce system performance as traditional NoC-basedinterconnect cannot mask the high latency and energy consumption caused by chip-to-chipwired I/Os. Moreover, with the increase in memory intensive applications and scaling of MCMC systems, traditional NoC-based wired interconnects fail to provide a scalable inter-connection solution required to support the increased cache-coherence and synchronization generated one-to-many traffic in future MCMC-based High-Performance Computing (HPC) nodes. Therefore, these computation and memory intensive MCMC systems need an energy-efficient, low latency, and scalable one-to-many (broadcast/multicast) traffic-aware interconnection infrastructure to ensure high-performance. Research in recent years has shown that Wireless Network-in-Package (WiNiP) architectures with CMOS compatible Millimeter-Wave (mm-wave) transceivers can provide a scalable, low latency, and energy-efficient interconnect solution for on and off-chip communication. In this dissertation, a one-to-many traffic-aware WiNiP interconnection architecture with a starvation-free hybrid Medium Access Control (MAC), an asymmetric topology, and a novel flow control has been proposed. The different components of the proposed architecture are individually one-to-many traffic-aware and as a system, they collaborate with each other to provide required support for one-to-many traffic communication in a MCMC environment. It has been shown that such interconnection architecture can reduce energy consumption and average packet latency by 46.96% and 47.08% respectively for MCMC systems. Despite providing performance enhancements, wireless channel, being an unguided medium, is vulnerable to various security attacks such as jamming induced Denial-of-Service (DoS), eavesdropping, and spoofing. Further, to minimize the time-to-market and design costs, modern SoCs often use Third Party IPs (3PIPs) from untrusted organizations. An adversary either at the foundry or at the 3PIP design house can introduce a malicious circuitry, to jeopardize an SoC. Such malicious circuitry is known as a Hardware Trojan (HT). An HTplanted in the WiNiP from a vulnerable design or manufacturing process can compromise a Wireless Interface (WI) to enable illegitimate transmission through the infected WI resulting in a potential DoS attack for other WIs in the MCMC system. Moreover, HTs can be used for various other malicious purposes, including battery exhaustion, functionality subversion, and information leakage. This information when leaked to a malicious external attackercan reveals important information regarding the application suites running on the system, thereby compromising the user profile. To address persistent jamming-based DoS attack in WiNiP, in this dissertation, a secure WiNiP interconnection architecture for MCMC systems has been proposed that re-uses the one-to-many traffic-aware MAC and existing Design for Testability (DFT) hardware along with Machine Learning (ML) approach. Furthermore, a novel Simulated Annealing (SA)-based routing obfuscation mechanism was also proposed toprotect against an HT-assisted novel traffic analysis attack. Simulation results show that,the ML classifiers can achieve an accuracy of 99.87% for DoS attack detection while SA-basedrouting obfuscation could reduce application detection accuracy to only 15% for HT-assistedtraffic analysis attack and hence, secure the WiNiP fabric from age-old and emerging attacks
    • …
    corecore