6,528 research outputs found

    Self-supervised Representation Learning for Ultrasound Video

    Full text link
    Recent advances in deep learning have achieved promising performance for medical image analysis, while in most cases ground-truth annotations from human experts are necessary to train the deep model. In practice, such annotations are expensive to collect and can be scarce for medical imaging applications. Therefore, there is significant interest in learning representations from unlabelled raw data. In this paper, we propose a self-supervised learning approach to learn meaningful and transferable representations from medical imaging video without any type of human annotation. We assume that in order to learn such a representation, the model should identify anatomical structures from the unlabelled data. Therefore we force the model to address anatomy-aware tasks with free supervision from the data itself. Specifically, the model is designed to correct the order of a reshuffled video clip and at the same time predict the geometric transformation applied to the video clip. Experiments on fetal ultrasound video show that the proposed approach can effectively learn meaningful and strong representations, which transfer well to downstream tasks like standard plane detection and saliency prediction.Comment: ISBI 202

    Self-supervised Contrastive Video-Speech Representation Learning for Ultrasound

    Get PDF
    In medical imaging, manual annotations can be expensive to acquire and sometimes infeasible to access, making conventional deep learning-based models difficult to scale. As a result, it would be beneficial if useful representations could be derived from raw data without the need for manual annotations. In this paper, we propose to address the problem of self-supervised representation learning with multi-modal ultrasound video-speech raw data. For this case, we assume that there is a high correlation between the ultrasound video and the corresponding narrative speech audio of the sonographer. In order to learn meaningful representations, the model needs to identify such correlation and at the same time understand the underlying anatomical features. We designed a framework to model the correspondence between video and audio without any kind of human annotations. Within this framework, we introduce cross-modal contrastive learning and an affinity-aware self-paced learning scheme to enhance correlation modelling. Experimental evaluations on multi-modal fetal ultrasound video and audio show that the proposed approach is able to learn strong representations and transfers well to downstream tasks of standard plane detection and eye-gaze prediction.Comment: MICCAI 2020 (early acceptance

    Show from Tell: Audio-Visual Modelling in Clinical Settings

    Full text link
    Auditory and visual signals usually present together and correlate with each other, not only in natural environments but also in clinical settings. However, the audio-visual modelling in the latter case can be more challenging, due to the different sources of audio/video signals and the noise (both signal-level and semantic-level) in auditory signals -- usually speech. In this paper, we consider audio-visual modelling in a clinical setting, providing a solution to learn medical representations that benefit various clinical tasks, without human expert annotation. A simple yet effective multi-modal self-supervised learning framework is proposed for this purpose. The proposed approach is able to localise anatomical regions of interest during ultrasound imaging, with only speech audio as a reference. Experimental evaluations on a large-scale clinical multi-modal ultrasound video dataset show that the proposed self-supervised method learns good transferable anatomical representations that boost the performance of automated downstream clinical tasks, even outperforming fully-supervised solutions

    Detecting Heart Disease from Multi-View Ultrasound Images via Supervised Attention Multiple Instance Learning

    Full text link
    Aortic stenosis (AS) is a degenerative valve condition that causes substantial morbidity and mortality. This condition is under-diagnosed and under-treated. In clinical practice, AS is diagnosed with expert review of transthoracic echocardiography, which produces dozens of ultrasound images of the heart. Only some of these views show the aortic valve. To automate screening for AS, deep networks must learn to mimic a human expert's ability to identify views of the aortic valve then aggregate across these relevant images to produce a study-level diagnosis. We find previous approaches to AS detection yield insufficient accuracy due to relying on inflexible averages across images. We further find that off-the-shelf attention-based multiple instance learning (MIL) performs poorly. We contribute a new end-to-end MIL approach with two key methodological innovations. First, a supervised attention technique guides the learned attention mechanism to favor relevant views. Second, a novel self-supervised pretraining strategy applies contrastive learning on the representation of the whole study instead of individual images as commonly done in prior literature. Experiments on an open-access dataset and an external validation set show that our approach yields higher accuracy while reducing model size.Comment: multiple-instance learning; self-supervised learning; semi-supervised learning; medical imagin

    A Survey of the Impact of Self-Supervised Pretraining for Diagnostic Tasks with Radiological Images

    Full text link
    Self-supervised pretraining has been observed to be effective at improving feature representations for transfer learning, leveraging large amounts of unlabelled data. This review summarizes recent research into its usage in X-ray, computed tomography, magnetic resonance, and ultrasound imaging, concentrating on studies that compare self-supervised pretraining to fully supervised learning for diagnostic tasks such as classification and segmentation. The most pertinent finding is that self-supervised pretraining generally improves downstream task performance compared to full supervision, most prominently when unlabelled examples greatly outnumber labelled examples. Based on the aggregate evidence, recommendations are provided for practitioners considering using self-supervised learning. Motivated by limitations identified in current research, directions and practices for future study are suggested, such as integrating clinical knowledge with theoretically justified self-supervised learning methods, evaluating on public datasets, growing the modest body of evidence for ultrasound, and characterizing the impact of self-supervised pretraining on generalization.Comment: 32 pages, 6 figures, a literature survey submitted to BMC Medical Imagin

    FUSC: Fetal Ultrasound Semantic Clustering of Second Trimester Scans Using Deep Self-supervised Learning

    Full text link
    Ultrasound is the primary imaging modality in clinical practice during pregnancy. More than 140M fetuses are born yearly, resulting in numerous scans. The availability of a large volume of fetal ultrasound scans presents the opportunity to train robust machine learning models. However, the abundance of scans also has its challenges, as manual labeling of each image is needed for supervised methods. Labeling is typically labor-intensive and requires expertise to annotate the images accurately. This study presents an unsupervised approach for automatically clustering ultrasound images into a large range of fetal views, reducing or eliminating the need for manual labeling. Our Fetal Ultrasound Semantic Clustering (FUSC) method is developed using a large dataset of 88,063 images and further evaluated on an additional unseen dataset of 8,187 images achieving over 92% clustering purity. The result of our investigation hold the potential to significantly impact the field of fetal ultrasound imaging and pave the way for more advanced automated labeling solutions. Finally, we make the code and the experimental setup publicly available to help advance the field

    Self-supervised contrastive learning of echocardiogram videos enables label-efficient cardiac disease diagnosis

    Full text link
    Advances in self-supervised learning (SSL) have shown that self-supervised pretraining on medical imaging data can provide a strong initialization for downstream supervised classification and segmentation. Given the difficulty of obtaining expert labels for medical image recognition tasks, such an "in-domain" SSL initialization is often desirable due to its improved label efficiency over standard transfer learning. However, most efforts toward SSL of medical imaging data are not adapted to video-based medical imaging modalities. With this progress in mind, we developed a self-supervised contrastive learning approach, EchoCLR, catered to echocardiogram videos with the goal of learning strong representations for efficient fine-tuning on downstream cardiac disease diagnosis. EchoCLR leverages (i) distinct videos of the same patient as positive pairs for contrastive learning and (ii) a frame re-ordering pretext task to enforce temporal coherence. When fine-tuned on small portions of labeled data (as few as 51 exams), EchoCLR pretraining significantly improved classification performance for left ventricular hypertrophy (LVH) and aortic stenosis (AS) over other transfer learning and SSL approaches across internal and external test sets. For example, when fine-tuning on 10% of available training data (519 studies), an EchoCLR-pretrained model achieved 0.72 AUROC (95% CI: [0.69, 0.75]) on LVH classification, compared to 0.61 AUROC (95% CI: [0.57, 0.64]) with a standard transfer learning approach. Similarly, using 1% of available training data (53 studies), EchoCLR pretraining achieved 0.82 AUROC (95% CI: [0.79, 0.84]) on severe AS classification, compared to 0.61 AUROC (95% CI: [0.58, 0.65]) with transfer learning. EchoCLR is unique in its ability to learn representations of medical videos and demonstrates that SSL can enable label-efficient disease classification from small, labeled datasets
    • …
    corecore