11,442 research outputs found

    Self-Supervised Audio-Visual Co-Segmentation

    Full text link
    Segmenting objects in images and separating sound sources in audio are challenging tasks, in part because traditional approaches require large amounts of labeled data. In this paper we develop a neural network model for visual object segmentation and sound source separation that learns from natural videos through self-supervision. The model is an extension of recently proposed work that maps image pixels to sounds. Here, we introduce a learning approach to disentangle concepts in the neural networks, and assign semantic categories to network feature channels to enable independent image segmentation and sound source separation after audio-visual training on videos. Our evaluations show that the disentangled model outperforms several baselines in semantic segmentation and sound source separation.Comment: Accepted to ICASSP 201

    Interpreting Deep Visual Representations via Network Dissection

    Full text link
    The success of recent deep convolutional neural networks (CNNs) depends on learning hidden representations that can summarize the important factors of variation behind the data. However, CNNs often criticized as being black boxes that lack interpretability, since they have millions of unexplained model parameters. In this work, we describe Network Dissection, a method that interprets networks by providing labels for the units of their deep visual representations. The proposed method quantifies the interpretability of CNN representations by evaluating the alignment between individual hidden units and a set of visual semantic concepts. By identifying the best alignments, units are given human interpretable labels across a range of objects, parts, scenes, textures, materials, and colors. The method reveals that deep representations are more transparent and interpretable than expected: we find that representations are significantly more interpretable than they would be under a random equivalently powerful basis. We apply the method to interpret and compare the latent representations of various network architectures trained to solve different supervised and self-supervised training tasks. We then examine factors affecting the network interpretability such as the number of the training iterations, regularizations, different initializations, and the network depth and width. Finally we show that the interpreted units can be used to provide explicit explanations of a prediction given by a CNN for an image. Our results highlight that interpretability is an important property of deep neural networks that provides new insights into their hierarchical structure.Comment: *B. Zhou and D. Bau contributed equally to this work. 15 pages, 27 figure

    Cross Pixel Optical Flow Similarity for Self-Supervised Learning

    Full text link
    We propose a novel method for learning convolutional neural image representations without manual supervision. We use motion cues in the form of optical flow, to supervise representations of static images. The obvious approach of training a network to predict flow from a single image can be needlessly difficult due to intrinsic ambiguities in this prediction task. We instead propose a much simpler learning goal: embed pixels such that the similarity between their embeddings matches that between their optical flow vectors. At test time, the learned deep network can be used without access to video or flow information and transferred to tasks such as image classification, detection, and segmentation. Our method, which significantly simplifies previous attempts at using motion for self-supervision, achieves state-of-the-art results in self-supervision using motion cues, competitive results for self-supervision in general, and is overall state of the art in self-supervised pretraining for semantic image segmentation, as demonstrated on standard benchmarks

    Seeing voices and hearing voices: learning discriminative embeddings using cross-modal self-supervision

    Full text link
    The goal of this work is to train discriminative cross-modal embeddings without access to manually annotated data. Recent advances in self-supervised learning have shown that effective representations can be learnt from natural cross-modal synchrony. We build on earlier work to train embeddings that are more discriminative for uni-modal downstream tasks. To this end, we propose a novel training strategy that not only optimises metrics across modalities, but also enforces intra-class feature separation within each of the modalities. The effectiveness of the method is demonstrated on two downstream tasks: lip reading using the features trained on audio-visual synchronisation, and speaker recognition using the features trained for cross-modal biometric matching. The proposed method outperforms state-of-the-art self-supervised baselines by a signficant margin.Comment: Under submission as a conference pape
    • …
    corecore