1,349 research outputs found

    Memory lower bounds for deterministic self-stabilization

    Full text link
    In the context of self-stabilization, a \emph{silent} algorithm guarantees that the register of every node does not change once the algorithm has stabilized. At the end of the 90's, Dolev et al. [Acta Inf. '99] showed that, for finding the centers of a graph, for electing a leader, or for constructing a spanning tree, every silent algorithm must use a memory of Ω(log⁥n)\Omega(\log n) bits per register in nn-node networks. Similarly, Korman et al. [Dist. Comp. '07] proved, using the notion of proof-labeling-scheme, that, for constructing a minimum-weight spanning trees (MST), every silent algorithm must use a memory of Ω(log⁥2n)\Omega(\log^2n) bits per register. It follows that requiring the algorithm to be silent has a cost in terms of memory space, while, in the context of self-stabilization, where every node constantly checks the states of its neighbors, the silence property can be of limited practical interest. In fact, it is known that relaxing this requirement results in algorithms with smaller space-complexity. In this paper, we are aiming at measuring how much gain in terms of memory can be expected by using arbitrary self-stabilizing algorithms, not necessarily silent. To our knowledge, the only known lower bound on the memory requirement for general algorithms, also established at the end of the 90's, is due to Beauquier et al.~[PODC '99] who proved that registers of constant size are not sufficient for leader election algorithms. We improve this result by establishing a tight lower bound of Θ(log⁡Δ+log⁥log⁥n)\Theta(\log \Delta+\log \log n) bits per register for self-stabilizing algorithms solving (Δ+1)(\Delta+1)-coloring or constructing a spanning tree in networks of maximum degree~Δ\Delta. The lower bound Ω(log⁥log⁥n)\Omega(\log \log n) bits per register also holds for leader election

    Optimal Space Lower Bound for Deterministic Self-Stabilizing Leader Election Algorithms

    Get PDF
    Given a boolean predicate ? on labeled networks (e.g., proper coloring, leader election, etc.), a self-stabilizing algorithm for ? is a distributed algorithm that can start from any initial configuration of the network (i.e., every node has an arbitrary value assigned to each of its variables), and eventually converge to a configuration satisfying ?. It is known that leader election does not have a deterministic self-stabilizing algorithm using a constant-size register at each node, i.e., for some networks, some of their nodes must have registers whose sizes grow with the size n of the networks. On the other hand, it is also known that leader election can be solved by a deterministic self-stabilizing algorithm using registers of O(log log n) bits per node in any n-node bounded-degree network. We show that this latter space complexity is optimal. Specifically, we prove that every deterministic self-stabilizing algorithm solving leader election must use ?(log log n)-bit per node registers in some n-node networks. In addition, we show that our lower bounds go beyond leader election, and apply to all problems that cannot be solved by anonymous algorithms

    Compact Deterministic Self-Stabilizing Leader Election: The Exponential Advantage of Being Talkative

    Full text link
    This paper focuses on compact deterministic self-stabilizing solutions for the leader election problem. When the protocol is required to be \emph{silent} (i.e., when communication content remains fixed from some point in time during any execution), there exists a lower bound of Omega(\log n) bits of memory per node participating to the leader election (where n denotes the number of nodes in the system). This lower bound holds even in rings. We present a new deterministic (non-silent) self-stabilizing protocol for n-node rings that uses only O(\log\log n) memory bits per node, and stabilizes in O(n\log^2 n) rounds. Our protocol has several attractive features that make it suitable for practical purposes. First, the communication model fits with the model used by existing compilers for real networks. Second, the size of the ring (or any upper bound on this size) needs not to be known by any node. Third, the node identifiers can be of various sizes. Finally, no synchrony assumption, besides a weakly fair scheduler, is assumed. Therefore, our result shows that, perhaps surprisingly, trading silence for exponential improvement in term of memory space does not come at a high cost regarding stabilization time or minimal assumptions

    Self-stabilizing protocol for anonymous oriented bi-directional rings under unfair distributed schedulers with a leader

    Full text link
    We propose a self-stabilizing protocol for anonymous oriented bi-directional rings of any size under unfair distributed schedulers with a leader. The protocol is a randomized self-stabilizing, meaning that starting from an arbitrary configuration it converges (with probability 1) in finite time to a legitimate configuration (i.e. global system state) without the need for explicit exception handler of backward recovery. A fault may throw the system into an illegitimate configuration, but the system will autonomously resume a legitimate configuration, by regarding the current illegitimate configuration as an initial configuration, if the fault is transient. A self-stabilizing system thus tolerates any kind and any finite number of transient faults. The protocol can be used to implement an unfair distributed mutual exclusion in any ring topology network; Keywords: self-stabilizing protocol, anonymous oriented bi-directional ring, unfair distributed schedulers. Ring topology network, non-uniform and anonymous network, self-stabilization, fault tolerance, legitimate configuration

    Stabilizing leader election in population protocols

    Get PDF
    In this paper we address the stabilizing leader election problem in the population protocols model augmented with oracles. Population protocols is a recent model of computation that captures the interactions of biological systems. In this model emergent global behavior is observed while anonymous finite-state agents(nodes) perform local peer interactions. Uniform self-stabilizing leader election is impossible in such systems without additional assumptions. Therefore, the classical model has been augmented with the eventual leader detector, Omega?, that eventually detects the presence or absence of a leader. In the augmented model several solutions for leader election in rings and complete networks have been proposed. In this work we extend the study to trees and arbitrary topologies. We propose deterministic and probabilistic solutions. All the proposed algorithms are memory optimal --- they need only one memory bit per agent. Additionally, we prove the necessity of the eventual leader detector even in environments helped by randomization

    Weak vs. Self vs. Probabilistic Stabilization

    Get PDF
    Self-stabilization is a strong property that guarantees that a network always resume correct behavior starting from an arbitrary initial state. Weaker guarantees have later been introduced to cope with impossibility results: probabilistic stabilization only gives probabilistic convergence to a correct behavior. Also, weak stabilization only gives the possibility of convergence. In this paper, we investigate the relative power of weak, self, and probabilistic stabilization, with respect to the set of problems that can be solved. We formally prove that in that sense, weak stabilization is strictly stronger that self-stabilization. Also, we refine previous results on weak stabilization to prove that, for practical schedule instances, a deterministic weak-stabilizing protocol can be turned into a probabilistic self-stabilizing one. This latter result hints at more practical use of weak-stabilization, as such algorthms are easier to design and prove than their (probabilistic) self-stabilizing counterparts

    Self-Stabilization in the Distributed Systems of Finite State Machines

    Get PDF
    The notion of self-stabilization was first proposed by Dijkstra in 1974 in his classic paper. The paper defines a system as self-stabilizing if, starting at any, possibly illegitimate, state the system can automatically adjust itself to eventually converge to a legitimate state in finite amount of time and once in a legitimate state it will remain so unless it incurs a subsequent transient fault. Dijkstra limited his attention to a ring of finite-state machines and provided its solution for self-stabilization. In the years following his introduction, very few papers were published in this area. Once his proposal was recognized as a milestone in work on fault tolerance, the notion propagated among the researchers rapidly and many researchers in the distributed systems diverted their attention to it. The investigation and use of self-stabilization as an approach to fault-tolerant behavior under a model of transient failures for distributed systems is now undergoing a renaissance. A good number of works pertaining to self-stabilization in the distributed systems were proposed in the yesteryears most of which are very recent. This report surveys all previous works available in the literature of self-stabilizing systems

    A Survey of Self-Stabilizing Spanning-Tree Construction Algorithms

    Get PDF
    Self-stabilizing systems can automatically recover from arbitrary state perturbations in finite time. They are therefore well-suited for dynamic, failure prone environments. Spanning-tree construction in distributed systems is a fundamental task which forms the basis for many other network algorithms (like token circulation or routing).This paper surveys self-stabilizing algorithms that construct a spanning tree within a network of processing entities. Lower bounds and related work are also discussed

    A Survey of Self-Stabilizing Spanning-Tree Construction Algorithms

    Get PDF
    Self-stabilizing systems can automatically recover from arbitrary state perturbations in finite time. They are therefore well-suited for dynamic, failure prone environments. Spanning-tree construction in distributed systems is a fundamental task which forms the basis for many other network algorithms (like token circulation or routing).This paper surveys self-stabilizing algorithms that construct a spanning tree within a network of processing entities. Lower bounds and related work are also discussed
    • 

    corecore