20 research outputs found

    Muscle activations during functional tasks in individuals with chronic ankle instability: a systematic review of electromyographical studies

    Get PDF
    Background: It has been reported that individuals with chronic ankle instability (CAI) show motor control ab-normalities. The study of muscle activations by means of surface electromyography (sEMG) plays a key role in understanding some of the features of movement abnormalities. Research question: Do common sEMG activation abnormalities and strategies exists across different functional movements? Methods: Literature review was conducted on PubMed, Web-of-Science and Cochrane databases. Studies pub-lished between 2000 and 2020 that assessed muscle activations by means of sEMG during any type of functional task in individuals with CAI, and used healthy individuals as controls, were included. Methodological quality was assessed using the modified Downs&Black checklist. Since the methodologies of different studies were hetero-geneous, no meta-analysis was conducted. Results: A total of 63 articles investigating muscle activations during gait, running, responses to perturbations, landing and hopping, cutting and turning; single-limb stance, star excursion balance task, forward lunges, ball- kicking, y-balance test and single-limb squatting were considered. Individuals with CAI showed a delayed activation of the peroneus longus in response to sudden inversion perturbations, in transitions between double- and single-limb stance, and in landing on unstable surfaces. Apparently, while walking on ground there are no differences between CAI and controls, walking on a treadmill increases the variability of muscles activations, probably as a “safety strategy” to avoid ankle inversion. An abnormal activation of the tibialis anterior was observed during a number of tasks. Finally, hip/spine muscles were activated before ankle muscles in CAI compared to controls. Conclusion: Though the methodology of the studies herein considered is heterogeneous, this review shows that the peroneal and tibialis anterior muscles have an abnormal activation in CAI individuals. These individuals also show a proximal muscle activation strategy during the performance of balance challenging tasks. Future studies should investigate whole-body muscle activation abnormalities in CAI individuals

    Analysis of the backpack loading efects on the human gait

    Get PDF
    Gait is a simple activity of daily life and one of the main abilities of the human being. Often during leisure, labour and sports activities, loads are carried over (e.g. backpack) during gait. These circumstantial loads can generate instability and increase biomechanicalstress over the human tissues and systems, especially on the locomotor, balance and postural regulation systems. According to Wearing (2006), subjects that carry a transitory or intermittent load will be able to find relatively efficient solutions to compensate its effects.info:eu-repo/semantics/publishedVersio

    Architectures and algorithms for dynamic overlay networks

    Get PDF
    Most of today’s Internet of Things (IoT) applications assume that data will be moved offdevices into centralized cloud platforms. While existing IoT systems leverage cloud-based analytics for meaningful data reasoning, the assumption that data should always be moved off the devices is problematic. The amount of data to be moved from devices over Internet gateways to cloud platforms is huge which potentially make it cost inefficient. In other scenarios, privacy concerns of customers or organizational rules complicate the process of transferring data to third-party data centers.This dissertation proposes architectures and dynamic overlay network algorithms for in-networkand edge processing of data offered by the globally available IoT devices and provides a global platform for meaningful and responsive data analysis and decision making. The proposed techniques shift IoT analytics from a ”collect data now and analyze it later” scenario to directlyproviding meaningful information from the in-network processing of devices data at or near thedevices. The techniques serve future IoT use cases including distributed context awareness, on-demand data analysis, and in-network decision making. The dissertation comprises three main components.The first component is a device management protocol for cloning devices’ data in proximateEdge Computing platforms. Unlike existing application-layer IoT management protocols theproposed protocol uses the LTE LTE-A radio frame structure, device-to-device communication,and IoT data properties to avoid excessive network access latency in existing technologies.The second component realizes distributed IoT analytics as overlay networks of devices clones. By means of virtual network embedding, it selects and interconnects devices’ clones to efficiently realize applications’ virtual topologies to achieve goals such as minimum latency, minimum infrastructure cost, or maximum infrastructure utilization.Finally, the dissertation presents a communication middleware that allows autonomous discovery, self-deployment, and online migration of devices’ clones across heterogeneous Edge computing platforms. The middleware ensures that communication latency between clones is kept minimum despite the uncontrolled variability of the network and hosting platforms conditions.We evaluate the proposed architectures and algorithms through simulations and prototypeimplementation of various components in controlled testbed environments, which we evaluateusing real user applications. We explore the feasibility of the proposed techniques from boththeoretical and practical perspectives.Keywords: Cloud Computing, Internet of Things, Algorithmic Game Theory, Compressive Sensin
    corecore