273 research outputs found

    Self-similar prior and wavelet bases for hidden incompressible turbulent motion

    Get PDF
    This work is concerned with the ill-posed inverse problem of estimating turbulent flows from the observation of an image sequence. From a Bayesian perspective, a divergence-free isotropic fractional Brownian motion (fBm) is chosen as a prior model for instantaneous turbulent velocity fields. This self-similar prior characterizes accurately second-order statistics of velocity fields in incompressible isotropic turbulence. Nevertheless, the associated maximum a posteriori involves a fractional Laplacian operator which is delicate to implement in practice. To deal with this issue, we propose to decompose the divergent-free fBm on well-chosen wavelet bases. As a first alternative, we propose to design wavelets as whitening filters. We show that these filters are fractional Laplacian wavelets composed with the Leray projector. As a second alternative, we use a divergence-free wavelet basis, which takes implicitly into account the incompressibility constraint arising from physics. Although the latter decomposition involves correlated wavelet coefficients, we are able to handle this dependence in practice. Based on these two wavelet decompositions, we finally provide effective and efficient algorithms to approach the maximum a posteriori. An intensive numerical evaluation proves the relevance of the proposed wavelet-based self-similar priors.Comment: SIAM Journal on Imaging Sciences, 201

    Effective Wavelet-Based Regularization of Divergence-free Fractional Brownian Motion

    Get PDF
    This paper presents a method for regularization of inverse problems. The vectorial bi-dimensional unknown is assumed to be the realization of an isotropic divergence-free fractional Brownian Motion (fBm). The method is based on fractional Laplacian and divergence-free wavelet bases. The main advantage of these bases is to enable an easy formalization in a Bayesian framework of fBm priors, by simply sampling wavelet coe cients according to Gaussian white noise. Fractional Laplacians and the divergence-free projector can naturally be implemented in the Fourier domain. An interesting alternative is to remain in the spatial domain. This is achieved by the analytical computation of the connection coefficients of divergence-free fractional Laplacian wavelets, which enables to easily rotate this simple prior in any sufficiently "regular" wavelet basis. Taking advantage of the tensorial structure of a separable fractional wavelet basis approximation, isotropic regularization is then computed in the spatial domain by low-dimensional matrix products. The method is successfully applied to fractal image restoration and turbulent optic-flow estimation

    Towards a solution of the closure problem for convective atmospheric boundary-layer turbulence

    Get PDF
    We consider the closure problem for turbulence in the dry convective atmospheric boundary layer (CBL). Transport in the CBL is carried by small scale eddies near the surface and large plumes in the well mixed middle part up to the inversion that separates the CBL from the stably stratified air above. An analytically tractable model based on a multivariate Delta-PDF approach is developed. It is an extension of the model of Gryanik and Hartmann [1] (GH02) that additionally includes a term for background turbulence. Thus an exact solution is derived and all higher order moments (HOMs) are explained by second order moments, correlation coefficients and the skewness. The solution provides a proof of the extended universality hypothesis of GH02 which is the refinement of the Millionshchikov hypothesis (quasi- normality of FOM). This refined hypothesis states that CBL turbulence can be considered as result of a linear interpolation between the Gaussian and the very skewed turbulence regimes. Although the extended universality hypothesis was confirmed by results of field measurements, LES and DNS simulations (see e.g. [2-4]), several questions remained unexplained. These are now answered by the new model including the reasons of the universality of the functional form of the HOMs, the significant scatter of the values of the coefficients and the source of the magic of the linear interpolation. Finally, the closures 61 predicted by the model are tested against measurements and LES data. Some of the other issues of CBL turbulence, e.g. familiar kurtosis-skewness relationships and relation of area coverage parameters of plumes (so called filling factors) with HOM will be discussed also

    Annual Research Briefs, 1990

    Get PDF
    The 1990 annual progress reports of the Research Fellows and students of the Center for Turbulent Research (CTR) are included. It is intended primarily as a contractor report to NASA, Ames Research Center. In addition, numerous CTR Manuscript Reports were published last year. The purpose of the CTR Manuscript Series is to expedite the dissemination of research results by the CTR staff. The CTR is devoted to the fundamental study of turbulent flow; its objectives are to produce advances in physical understanding of turbulence, in turbulence modeling and simulation, and in turbulence control

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Turbulence: Numerical Analysis, Modelling and Simulation

    Get PDF
    The problem of accurate and reliable simulation of turbulent flows is a central and intractable challenge that crosses disciplinary boundaries. As the needs for accuracy increase and the applications expand beyond flows where extensive data is available for calibration, the importance of a sound mathematical foundation that addresses the needs of practical computing increases. This Special Issue is directed at this crossroads of rigorous numerical analysis, the physics of turbulence and the practical needs of turbulent flow simulations. It seeks papers providing a broad understanding of the status of the problem considered and open problems that comprise further steps

    Aeronautical engineering: A continuing bibliography with indexes (supplement 318)

    Get PDF
    This bibliography lists 217 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1995. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    [Activity of Institute for Computer Applications in Science and Engineering]

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science

    Visual modeling and simulation of multiscale phenomena

    Get PDF
    Many large-scale systems seen in real life, such as human crowds, fluids, and granular materials, exhibit complicated motion at many different scales, from a characteristic global behavior to important small-scale detail. Such multiscale systems are computationally expensive for traditional simulation techniques to capture over the full range of scales. In this dissertation, I present novel techniques for scalable and efficient simulation of these large, complex phenomena for visual computing applications. These techniques are based on a new approach of representing a complex system by coupling together separate models for its large-scale and fine-scale dynamics. In fluid simulation, it remains a challenge to efficiently simulate fine local detail such as foam, ripples, and turbulence without compromising the accuracy of the large-scale flow. I present two techniques for this problem that combine physically-based numerical simulation for the global flow with efficient local models for detail. For surface features, I propose the use of texture synthesis, guided by the physical characteristics of the macroscopic flow. For turbulence in the fluid motion itself, I present a technique that tracks the transfer of energy from the mean flow to the turbulent fluctuations and synthesizes these fluctuations procedurally, allowing extremely efficient visual simulation of turbulent fluids. Another large class of problems which are not easily handled by traditional approaches is the simulation of very large aggregates of discrete entities, such as dense pedestrian crowds and granular materials. I present a technique for crowd simulation that couples a discrete per-agent model of individual navigation with a novel continuum formulation for the collective motion of pedestrians. This approach allows simulation of dense crowds of a hundred thousand agents at near-real-time rates on desktop computers. I also present a technique for simulating granular materials, which generalizes this model and introduces a novel computational scheme for friction. This method efficiently reproduces a wide range of granular behavior and allows two-way interaction with simulated solid bodies. In all of these cases, the proposed techniques are typically an order of magnitude faster than comparable existing methods. Through these applications to a diverse set of challenging simulation problems, I demonstrate the benefits of the proposed approach, showing that it is a powerful and versatile technique for the simulation of a broad range of large and complex systems
    • 

    corecore