297 research outputs found

    A network-aware framework for energy-efficient data acquisition in wireless sensor networks

    Get PDF
    Wireless sensor networks enable users to monitor the physical world at an extremely high fidelity. In order to collect the data generated by these tiny-scale devices, the data management community has proposed the utilization of declarative data-acquisition frameworks. While these frameworks have facilitated the energy-efficient retrieval of data from the physical environment, they were agnostic of the underlying network topology and also did not support advanced query processing semantics. In this paper we present KSpot+, a distributed network-aware framework that optimizes network efficiency by combining three components: (i) the tree balancing module, which balances the workload of each sensor node by constructing efficient network topologies; (ii) the workload balancing module, which minimizes data reception inefficiencies by synchronizing the sensor network activity intervals; and (iii) the query processing module, which supports advanced query processing semantics. In order to validate the efficiency of our approach, we have developed a prototype implementation of KSpot+ in nesC and JAVA. In our experimental evaluation, we thoroughly assess the performance of KSpot+ using real datasets and show that KSpot+ provides significant energy reductions under a variety of conditions, thus significantly prolonging the longevity of a WSN

    Device-to-Device Communication in 5G: Towards Efficient Scheduling

    Get PDF
    5G wireless networks are expected to carry large traffic volumes due to the growth of mobile devices and the increasing demand for high data rates from applications. Device to device communication is one of the suggested technologies to support this increasing load and enhance the capacity of networks. However, the implementation of D2D communication reveals many barriers that include communication scheduling, for which the architecture remains complex and obscure. In this paper, an overview of the available literature on the implementation of networks supporting D2D communication is presented, emphasizing the complexity of the offered solutions. This paper also offers a study of the impact of different device distribution models on the throughput of the devices. The paper introduces the challenges and makes the case for the need to find a more efficient D2D scheduler providing less complexity

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    A selective downlink scheduling algorithm to enhance the quality of VOD services for WAVE networks

    Get PDF
    Providing quality-of-service- (QoS-) guaranteed video on demand (VOD) services over wireless access in vehicular environments (WAVEs) is a challenge as WAVE adopts enhanced distributive channel access (EDCA), a contention-based channel access mechanism, for air interface access control. This paper proposes a selective downlink scheduling (SDS) algorithm to enhance the quality of VOD for WAVE networks. According to the importance of video decoding, video packets are categorized into high and low priorities. The categorized packets are put into different queues in roadside units (RSUs) to contend for transmission opportunities. Aiming to improve video playback quality and reduce video playback delay, the proposed SDS algorithm schedules video packets based on their importance, playback deadline, and their real-time parameters of receiving onboard units (OBUs), such as velocity and remaining dwelling time. The effectiveness of SDS algorithm is verified by simulations
    • …
    corecore