1,554 research outputs found

    Self-scaled barrier functions on symmetric cones and their classification

    Get PDF
    Self-scaled barrier functions on self-scaled cones were introduced through a set of axioms in 1994 by Y.E. Nesterov and M.J. Todd as a tool for the construction of long-step interior point algorithms. This paper provides firm foundation for these objects by exhibiting their symmetry properties, their intimate ties with the symmetry groups of their domains of definition, and subsequently their decomposition into irreducible parts and algebraic classification theory. In a first part we recall the characterisation of the family of self-scaled cones as the set of symmetric cones and develop a primal-dual symmetric viewpoint on self-scaled barriers, results that were first discovered by the second author. We then show in a short, simple proof that any pointed, convex cone decomposes into a direct sum of irreducible components in a unique way, a result which can also be of independent interest. We then show that any self-scaled barrier function decomposes in an essentially unique way into a direct sum of self-scaled barriers defined on the irreducible components of the underlying symmetric cone. Finally, we present a complete algebraic classification of self-scaled barrier functions using the correspondence between symmetric cones and Euclidean Jordan algebras.Comment: 17 page

    Self-scaled barriers for irreducible symmetric cones

    Full text link
    Self-scaled barrier functions are fundamental objects in the theory of interior-point methods for linear optimization over symmetric cones, of which linear and semidefinite programming are special cases. We are classifying all self-scaled barriers over irreducible symmetric cones and show that these functions are merely homothetic transformations of the universal barrier function. Together with a decomposition theorem for self-scaled barriers this concludes the algebraic classification theory of these functions. After introducing the reader to the concepts relevant to the problem and tracing the history of the subject, we start by deriving our result from first principles in the important special case of semidefinite programming. We then generalise these arguments to irreducible symmetric cones by invoking results from the theory of Euclidean Jordan algebras.Comment: 12 page

    Interior-point algorithms for convex optimization based on primal-dual metrics

    Full text link
    We propose and analyse primal-dual interior-point algorithms for convex optimization problems in conic form. The families of algorithms we analyse are so-called short-step algorithms and they match the current best iteration complexity bounds for primal-dual symmetric interior-point algorithm of Nesterov and Todd, for symmetric cone programming problems with given self-scaled barriers. Our results apply to any self-concordant barrier for any convex cone. We also prove that certain specializations of our algorithms to hyperbolic cone programming problems (which lie strictly between symmetric cone programming and general convex optimization problems in terms of generality) can take advantage of the favourable special structure of hyperbolic barriers. We make new connections to Riemannian geometry, integrals over operator spaces, Gaussian quadrature, and strengthen the connection of our algorithms to quasi-Newton updates and hence first-order methods in general.Comment: 36 page

    A homogeneous interior-point algorithm for nonsymmetric convex conic optimization

    Get PDF

    Inner approximation of convex cones via primal-dual ellipsoidal norms

    Get PDF
    We study ellipsoids from the point of view of approximating convex sets. Our focus is on finding largest volume ellipsoids with specified centers which are contained in certain convex cones. After reviewing the related literature and establishing some fundamental mathematical techniques that will be useful, we derive such maximum volume ellipsoids for second order cones and the cones of symmetric positive semidefinite matrices. Then we move to the more challenging problem of finding a largest pair (in the sense of geometric mean of their radii) of primal-dual ellipsoids (in the sense of dual norms) with specified centers that are contained in their respective primal-dual pair of convex cones

    Linear optimization over homogeneous matrix cones

    Full text link
    A convex cone is homogeneous if its automorphism group acts transitively on the interior of the cone, i.e., for every pair of points in the interior of the cone, there exists a cone automorphism that maps one point to the other. Cones that are homogeneous and self-dual are called symmetric. The symmetric cones include the positive semidefinite matrix cone and the second order cone as important practical examples. In this paper, we consider the less well-studied conic optimization problems over cones that are homogeneous but not necessarily self-dual. We start with cones of positive semidefinite symmetric matrices with a given sparsity pattern. Homogeneous cones in this class are characterized by nested block-arrow sparsity patterns, a subset of the chordal sparsity patterns. We describe transitive subsets of the automorphism groups of the cones and their duals, and important properties of the composition of log-det barrier functions with the automorphisms in this set. Next, we consider extensions to linear slices of the positive semidefinite cone, i.e., intersection of the positive semidefinite cone with a linear subspace, and review conditions that make the cone homogeneous. In the third part of the paper we give a high-level overview of the classical algebraic theory of homogeneous cones due to Vinberg and Rothaus. A fundamental consequence of this theory is that every homogeneous cone admits a spectrahedral (linear matrix inequality) representation. We conclude by discussing the role of homogeneous cone structure in primal-dual symmetric interior-point methods.Comment: 59 pages, 10 figures, to appear in Acta Numeric
    corecore