53 research outputs found

    Design And Synthesis Of Clockless Pipelines Based On Self-resetting Stage Logic

    Get PDF
    For decades, digital design has been primarily dominated by clocked circuits. With larger scales of integration made possible by improved semiconductor manufacturing techniques, relying on a clock signal to orchestrate logic operations across an entire chip became increasingly difficult. Motivated by this problem, designers are currently considering circuits which can operate without a clock. However, the wide acceptance of these circuits by the digital design community requires two ingredients: (i) a unified design methodology supported by widely available CAD tools, and (ii) a granularity of design techniques suitable for synthesizing large designs. Currently, there is no unified established design methodology to support the design and verification of these circuits. Moreover, the majority of clockless design techniques is conceived at circuit level, and is subsequently so fine-grain, that their application to large designs can have unacceptable area costs. Given these considerations, this dissertation presents a new clockless technique, called self-resetting stage logic (SRSL), in which the computation of a block is reset periodically from within the block itself. SRSL is used as a building block for three coarse-grain pipelining techniques: (i) Stage-controlled self-resetting stage logic (S-SRSL) Pipelines: In these pipelines, the control of the communication between stages is performed locally between each pair of stages. This communication is performed in a uni-directional manner in order to simplify its implementation. (ii) Pipeline-controlled self-resetting stage logic (P-SRSL) Pipelines: In these pipelines, the communication between each pair of stages in the pipeline is driven by the oscillation of the last pipeline stage. Their communication scheme is identical to the one used in S-SRSL pipelines. (iii) Delay-tolerant self-resetting stage logic (D-SRSL) Pipelines: While communication in these pipelines is local in nature in a manner similar to the one used in S-SRL pipelines, this communication is nevertheless extended in both directions. The result of this bi-directional approach is an increase in the capability of the pipeline to handle stages with random delay. Based on these pipelining techniques, a new design methodology is proposed to synthesize clockless designs. The synthesis problem consists of synthesizing an SRSL pipeline from a gate netlist with a minimum area overhead given a specified data rate. A two-phase heuristic algorithm is proposed to solve this problem. The goal of the algorithm is to pipeline a given datapath by minimizing the area occupied by inter-stage latches without violating any timing constraints. Experiments with this synthesis algorithm show that while P-SRSL pipelines can reach high throughputs in shallow pipelines, D-SRSL pipelines can achieve comparable throughputs in deeper pipelines

    Realization and Formal Analysis of Asynchronous Pulse Communication Circuits

    Get PDF
    This work presents an approach to constructing asynchronous pulsed communication circuits. These circuits use small delay elements to introduce a gate level sense of time, removing the need for either a clock or handshaking signal to be part of a high-speed communication link. This construction method allows the creation of links with better than normal jitter tolerance, allowing for simple circuit architectures that can easily be made robust to radiation induced soft error. A 5Gbps radiation-hardened link, targeted at use in detector modules at the LHC, will be presented. This application presents a special challenge due to both very high radiation levels (1+MGy life time dose) and the demand for minimum resource (area, power, cable cost) use. The presented link, realized in 130nm technology, is unique in that it has low power (~50mW end to end) and very low area 0.12mm^2 including electrostatic discharge protection, and I/O amplifiers. Due to its asynchronous construction and the gate design style, the link has essentially zero power dissipation when idle, and enters and exits its idle state with no delay. In addition to the construction of the link, this presentation covers the design and analysis methodology that can be used to create other asynchronous communication circuits. The methodology achieves higher performance than conventional static technology but needs only a reasonable design effort using tools and strategies that are only mildly extended versions of those familiar to digital static designers. It is used to construct the serializer, deserializer, and self-test circuitry for the presented link. In this case, a 5Gbps SER/DES and a 2GHz parallel pseudo-random number generator are implemented in 130nm CMOS technology using a gate design style that does not dissipate static power

    Contributions to the Design of Asynchronous Macromodular Systems

    Get PDF
    In this thesis, I advocate the use of macromodules to design and build robust and performance-competitive asynchronous systems. The contributions of the work relate to different aspects of the design of asynchronous macromodular systems. First, an architectural optimization for 4-phase systems is introduced. The goal of the optimization is to increase the performance of a system by increasing the level of concurrent activity in the sequencing of data processing stages. In particular, three new asynchronous sequencers are designed, which increase the throughput of the system. Existing asynchronous data paths do not operate correctly at this increased level of concurrency: data hazards may result. Interlock mechanisms are introduced to insure correct operation. The technique can also be regarded as a low-power optimization: The increased throughput can be traded for a significant reduction in the power consumption of the entire system. SPICE simulation results show that the new sequencers allow roughly twice the throughput of non-concurrent sequencers. The simulations also show that, after voltage scaling, energy dissipation is reduced by a factor of 2.5. Second, the use of pulses for efficient inter-module synchronization is introduced. The idea is complemented with the definition of a pulse-mode handshake protocol and the characterization of Pulse-Burst Operation (PBO), an important extension to traditional pulse-mode operation. Also, a basic set of macromodules, that efficiently implement control operations such as sequencing, selection, iteration, concurrency control, resource sharing, and arbitration is presented. Modules for interfacing pulse-mode circuits with traditional 2-phase and 4-phase circuits are also included in the set. Finally, the design of a packet switch is used to demonstrate the viability of pulse-mode macromodules to implement complex, high performance systems. The switch organization, its asynchronous operation, and the low control overhead introduced by pulse-mode macromodules result in a design that can handle 2.4 times the target throughput of 155 Mbits/Sec. Also, the switch is characterized by very low input-to-output latency. These results suggest that pulse-mode macromodules can keep control overhead low without introducing complex, unsafe timing considerations, two necessary conditions to achieve robust, performance-competitive systems
    • …
    corecore