445 research outputs found

    New Design Techniques for Dynamic Reconfigurable Architectures

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Fault-tolerant building-block computer study

    Get PDF
    Ultra-reliable core computers are required for improving the reliability of complex military systems. Such computers can provide reliable fault diagnosis, failure circumvention, and, in some cases serve as an automated repairman for their host systems. A small set of building-block circuits which can be implemented as single very large integration devices, and which can be used with off-the-shelf microprocessors and memories to build self checking computer modules (SCCM) is described. Each SCCM is a microcomputer which is capable of detecting its own faults during normal operation and is described to communicate with other identical modules over one or more Mil Standard 1553A buses. Several SCCMs can be connected into a network with backup spares to provide fault-tolerant operation, i.e. automated recovery from faults. Alternative fault-tolerant SCCM configurations are discussed along with the cost and reliability associated with their implementation

    Infrastructures and Algorithms for Testable and Dependable Systems-on-a-Chip

    Get PDF
    Every new node of semiconductor technologies provides further miniaturization and higher performances, increasing the number of advanced functions that electronic products can offer. Silicon area is now so cheap that industries can integrate in a single chip usually referred to as System-on-Chip (SoC), all the components and functions that historically were placed on a hardware board. Although adding such advanced functionality can benefit users, the manufacturing process is becoming finer and denser, making chips more susceptible to defects. Today’s very deep-submicron semiconductor technologies (0.13 micron and below) have reached susceptibility levels that put conventional semiconductor manufacturing at an impasse. Being able to rapidly develop, manufacture, test, diagnose and verify such complex new chips and products is crucial for the continued success of our economy at-large. This trend is expected to continue at least for the next ten years making possible the design and production of 100 million transistor chips. To speed up the research, the National Technology Roadmap for Semiconductors identified in 1997 a number of major hurdles to be overcome. Some of these hurdles are related to test and dependability. Test is one of the most critical tasks in the semiconductor production process where Integrated Circuits (ICs) are tested several times starting from the wafer probing to the end of production test. Test is not only necessary to assure fault free devices but it also plays a key role in analyzing defects in the manufacturing process. This last point has high relevance since increasing time-to-market pressure on semiconductor fabrication often forces foundries to start volume production on a given semiconductor technology node before reaching the defect densities, and hence yield levels, traditionally obtained at that stage. The feedback derived from test is the only way to analyze and isolate many of the defects in today’s processes and to increase process’s yield. With the increasing need of high quality electronic products, at each new physical assembly level, such as board and system assembly, test is used for debugging, diagnosing and repairing the sub-assemblies in their new environment. Similarly, the increasing reliability, availability and serviceability requirements, lead the users of high-end products performing periodic tests in the field throughout the full life cycle. To allow advancements in each one of the above scaling trends, fundamental changes are expected to emerge in different Integrated Circuits (ICs) realization disciplines such as IC design, packaging and silicon process. These changes have a direct impact on test methods, tools and equipment. Conventional test equipment and methodologies will be inadequate to assure high quality levels. On chip specialized block dedicated to test, usually referred to as Infrastructure IP (Intellectual Property), need to be developed and included in the new complex designs to assure that new chips will be adequately tested, diagnosed, measured, debugged and even sometimes repaired. In this thesis, some of the scaling trends in designing new complex SoCs will be analyzed one at a time, observing their implications on test and identifying the key hurdles/challenges to be addressed. The goal of the remaining of the thesis is the presentation of possible solutions. It is not sufficient to address just one of the challenges; all must be met at the same time to fulfill the market requirements

    Jiko kaifukugata operetingu shisutemu kochiku furemu waku

    Get PDF
    制度:新 ; 報告番号:甲2786号 ; 学位の種類:博士(工学) ; 授与年月日:2009/2/25 ; 早大学位記番号:新500

    Memory built-in self-repair and correction for improving yield: a review

    Get PDF
    Nanometer memories are highly prone to defects due to dense structure, necessitating memory built-in self-repair as a must-have feature to improve yield. Today’s system-on-chips contain memories occupying an area as high as 90% of the chip area. Shrinking technology uses stricter design rules for memories, making them more prone to manufacturing defects. Further, using 3D-stacked memories makes the system vulnerable to newer defects such as those coming from through-silicon-vias (TSV) and micro bumps. The increased memory size is also resulting in an increase in soft errors during system operation. Multiple memory repair techniques based on redundancy and correction codes have been presented to recover from such defects and prevent system failures. This paper reviews recently published memory repair methodologies, including various built-in self-repair (BISR) architectures, repair analysis algorithms, in-system repair, and soft repair handling using error correcting codes (ECC). It provides a classification of these techniques based on method and usage. Finally, it reviews evaluation methods used to determine the effectiveness of the repair algorithms. The paper aims to present a survey of these methodologies and prepare a platform for developing repair methods for upcoming-generation memories
    corecore