801 research outputs found

    Software tools for real-time simulation and control

    Get PDF
    The objective of this thesis is to design and simulate a multi-agent based energy management system for a shipboard power system in hard real-time environment. The automatic reconfiguration of shipboard power systems is essential to improve survivability. Multi-agent technology is used in designing the reconfigurable energy management system using a self-stabilizing maximum flow algorithm. The agent based energy management system is designed in a Matlab/Simulink environment. Reconfiguration is performed for several situations including start-up, loss of an agent, limited available power, and distribution to priority ranked loads. The number of steps taken to reach the global solution and the time taken are very promising. With the growing importance of timing accuracy in simulating control systems during design and development, there is an increased need for these simulations to run in a real-time environment. This research further focuses on software tools that support hard real-time environment to run real-time simulations. A detailed survey has been conducted on freely available real-time operating systems and other software tools to setup a desktop PC supporting real-time environment. Matlab/Simulink/RTW-RTAI was selected as real-time computer aided control design software for demonstrating real-time simulation of agent based energy management system. The timing accuracy of these simulations has been verified successfully

    Multiagent autonomous energy management

    Get PDF
    The objective of this thesis is to design distributed software agents for reliable operation of integrated electric power systems of modern electric warships. The automatic reconfiguration of electric shipboard power systems is an important step toward improved fight-through and self-healing capabilities of naval warships. The improvements are conceptualized by redesigning the electric power system and its controls. This research focuses on a new scheme for an energy management system in the form of distributed control/software agents. Multiagent systems provide an ideal level of abstraction for modeling complex applications where distributed and heterogeneous entities need to cooperate to achieve a common goal. The agents\u27 task is to ensure supply of the various load demands while taking into consideration system constraints and load and supply path priorities. A self-stabilizing maximum flow algorithm is investigated to allow implementation of the agents\u27 strategies and find a global solution by only considering local information and a minimum amount of communication. (Abstract shortened by UMI.)

    Hybrid Maritime Microgrids: A Quest for Future Onboard Integrated Marine Power Systems

    Get PDF
    The following is a comprehensive analysis which details potential ways for the maritime industry to begin to phase out AC power generation and distribution on new vessels over a short period of time. Therefore, the vessels of the future should consider transitioning into DC power generation and distribution. During the transition from AC shipboard systems to DC shipboard systems, there will be a time during which the vessels will be run by “hybrid” shipboard power systems, which utilize a mixture of AC and DC power. These systems are known as integrated marine power systems (IMPS) or hybrid maritime microgrid architectures, since they represent a distribution system or a part thereof. This study presents a state of the art of maritime systems, emphasizing on the design aspects of hybrid maritime microgrids, summarizing the advantages, disadvantages, and the challenges that planners may face when it comes to the vessels of the future. This study also reviews remedies that have been recently proposed in the literature to overcome such challenges. In addition, this work reports on the problem of service restoration of shipboard power systems and introduces directions on how to enhance the survivability of maritime power systems using techniques based on distribution system reconfiguration

    Distributed Predictive Control for MVDC Shipboard Power System Management

    Get PDF
    Shipboard Power System (SPS) is known as an independent controlled small electric network powered by the distributed onboard generation system. Since many electric components are tightly coupled in a small space and the system is not supported with a relatively stronger grid, SPS is more susceptible to unexpected disturbances and physical damages compared to conventional terrestrial power systems. Among different distribution configurations, power-electronic based DC distribution is considered the trending technology for the next-generation U.S. Navy fleet design to replace the conventional AC-based distribution. This research presents appropriate control management frameworks to improve the Medium-Voltage DC (MVDC) shipboard power system performance. Model Predictive Control (MPC) is an advanced model-based approach which uses the system model to predict the future output states and generates an optimal control sequence over the prediction horizon. In this research, at first, a centralized MPC is developed for a nonlinear MVDC SPS when a high-power pulsed load exists in the system. The closed-loop stability analysis is considered in the MPC optimization problem. A comparison is presented for different cases of load prediction for MPC, namely, no prediction, perfect prediction, and Autoregressive Integrated Moving Average (ARIMA) prediction. Another centralized MPC controller is also designed to address the reconfiguration problem of the MVDC system in abnormal conditions. The reconfiguration goal is to maximize the power delivered to the loads with respect to power balance, generation limits and load priorities. Moreover, a distributed control structure is proposed for a nonlinear MVDC SPS to develop a scalable power management architecture. In this framework, each subsystem is controlled by a local MPC using its state variables, parameters and interaction variables from other subsystems communicated through a coordinator. The Goal Coordination principle is used to manage interactions between subsystems. The developed distributed control structure brings out several significant advantages including less computational overhead, higher flexibility and a good error tolerance behavior as well as a good overall system performance. To demonstrate the efficiency of the proposed approach, a performance analysis is accomplished by comparing centralized and distributed control of global and partitioned MVDC models for two cases of continuous and discretized control inputs

    Next-Generation Shipboard DC Power System: Introduction Smart Grid and dc Microgrid Technologies into Maritime Electrical Networks

    Get PDF
    In recent years, evidence has suggested that the global energy system is on the verge of a drastic revolution. The evolutionary development in power electronic technologies, the emergence of high-performance energy storage devices, and the ever-increasing penetration of renewable energy sources (RESs) are commonly recognized as the major driving forces of the revolution. The explosion in consumer electronics is also powering this change. In this context, dc power distribution technologies have made a comeback and keep gaining a commendable increase in research interest and industrial applications. In addition, the concept of flexible and smart distribution has also been proposed, which tends to exploit distributed generation and pack together the distributed RESs and local electrical loads as an independent and self-sustainable entity, namely a microgrid. At present, research in the area of dc microgrids has investigated and developed a series of advanced methods in control, management, and objective-oriented optimization that would establish the technical interface enabling future applications in multiple industrial areas, such as smart buildings, electric vehicles, aerospace/aircraft power systems, and maritime power systems
    corecore