12,664 research outputs found

    Self-Paced Absolute Learning Progress as a Regularized Approach to Curriculum Learning

    Full text link
    The usability of Reinforcement Learning is restricted by the large computation times it requires. Curriculum Reinforcement Learning speeds up learning by defining a helpful order in which an agent encounters tasks, i.e. from simple to hard. Curricula based on Absolute Learning Progress (ALP) have proven successful in different environments, but waste computation on repeating already learned behaviour in new tasks. We solve this problem by introducing a new regularization method based on Self-Paced (Deep) Learning, called Self-Paced Absolute Learning Progress (SPALP). We evaluate our method in three different environments. Our method achieves performance comparable to original ALP in all cases, and reaches it quicker than ALP in two of them. We illustrate possibilities to further improve the efficiency and performance of SPALP.Comment: 11 pages, 8 figures. The paper was a result from an Integrated Project at TU Darmstadt for which we received course credit (9 ECTS) and is not meant to be published elsewher

    Learning to Auto Weight: Entirely Data-driven and Highly Efficient Weighting Framework

    Full text link
    Example weighting algorithm is an effective solution to the training bias problem, however, most previous typical methods are usually limited to human knowledge and require laborious tuning of hyperparameters. In this paper, we propose a novel example weighting framework called Learning to Auto Weight (LAW). The proposed framework finds step-dependent weighting policies adaptively, and can be jointly trained with target networks without any assumptions or prior knowledge about the dataset. It consists of three key components: Stage-based Searching Strategy (3SM) is adopted to shrink the huge searching space in a complete training process; Duplicate Network Reward (DNR) gives more accurate supervision by removing randomness during the searching process; Full Data Update (FDU) further improves the updating efficiency. Experimental results demonstrate the superiority of weighting policy explored by LAW over standard training pipeline. Compared with baselines, LAW can find a better weighting schedule which achieves much more superior accuracy on both biased CIFAR and ImageNet.Comment: Accepted by AAAI 202

    CASSL: Curriculum Accelerated Self-Supervised Learning

    Full text link
    Recent self-supervised learning approaches focus on using a few thousand data points to learn policies for high-level, low-dimensional action spaces. However, scaling this framework for high-dimensional control require either scaling up the data collection efforts or using a clever sampling strategy for training. We present a novel approach - Curriculum Accelerated Self-Supervised Learning (CASSL) - to train policies that map visual information to high-level, higher- dimensional action spaces. CASSL orders the sampling of training data based on control dimensions: the learning and sampling are focused on few control parameters before other parameters. The right curriculum for learning is suggested by variance-based global sensitivity analysis of the control space. We apply our CASSL framework to learning how to grasp using an adaptive, underactuated multi-fingered gripper, a challenging system to control. Our experimental results indicate that CASSL provides significant improvement and generalization compared to baseline methods such as staged curriculum learning (8% increase) and complete end-to-end learning with random exploration (14% improvement) tested on a set of novel objects

    Improved Reinforcement Learning with Curriculum

    Full text link
    Humans tend to learn complex abstract concepts faster if examples are presented in a structured manner. For instance, when learning how to play a board game, usually one of the first concepts learned is how the game ends, i.e. the actions that lead to a terminal state (win, lose or draw). The advantage of learning end-games first is that once the actions which lead to a terminal state are understood, it becomes possible to incrementally learn the consequences of actions that are further away from a terminal state - we call this an end-game-first curriculum. Currently the state-of-the-art machine learning player for general board games, AlphaZero by Google DeepMind, does not employ a structured training curriculum; instead learning from the entire game at all times. By employing an end-game-first training curriculum to train an AlphaZero inspired player, we empirically show that the rate of learning of an artificial player can be improved during the early stages of training when compared to a player not using a training curriculum.Comment: Draft prior to submission to IEEE Trans on Games. Changed paper slightl
    • …
    corecore