6 research outputs found

    A Real-Time Measurement System for Long-Life Flood Monitoring and Warning Applications

    Get PDF
    A flood warning system incorporates telemetered rainfall and flow/water level data measured at various locations in the catchment area. Real-time accurate data collection is required for this use, and sensor networks improve the system capabilities. However, existing sensor nodes struggle to satisfy the hydrological requirements in terms of autonomy, sensor hardware compatibility, reliability and long-range communication. We describe the design and development of a real-time measurement system for flood monitoring, and its deployment in a flash-flood prone 650 km2 semiarid watershed in Southern Spain. A developed low-power and long-range communication device, so-called DatalogV1, provides automatic data gathering and reliable transmission. DatalogV1 incorporates self-monitoring for adapting measurement schedules for consumption management and to capture events of interest. Two tests are used to assess the success of the development. The results show an autonomous and robust monitoring system for long-term collection of water level data in many sparse locations during flood events

    Geostry - a Peer-to-Peer System for Location-based Information

    Get PDF
    An interesting development is summarized by the notion of ”Ubiquitous Computing”: In this area, miniature systems are integrated into everyday objects making these objects ”smart” and able to communicate. Thereby, everyday objects can gather information about their state and their environment. By embedding this information into a model of the real world, which nowadays can be modeled very realistically using sophisticated 3D modeling techniques, it is possible to generate powerful digital world models. Not only can existing objects of the real world and their state be mapped into these world models, but additional information can be linked to these objects as well. The result is a symbiosis of the real world and digital information spaces. In this thesis, we present a system that allows for an easy access to this information. In contrast to existing solutions our approach is not based on a server-client architecture. Geostry bases on a peer-to-peer system and thus incorporates all the advantages, such as self-organization, fairness (in terms of costs), scalability and many more. Setting up the network is realized through a decentralized bootstrapping protocol based on an existing Internet service to provide robustness and availability. To selectively find geographic-related information Geostry supports spatial queries. They - among other things - enable the user to search for information e.g. in a certain district only. Sometimes, a certain piece of information raises particular interest. To cope with the run on the single computer that provides this specific information, Geostry offers dynamic replication mechanisms. Thereby, the information is replicated for as long as the rush lasts. Thus, Geostry offers all aspects from setting up a network, providing access to geo-related information and replication methods to provide accessibility in times of high loads

    Modelling and Design of Resilient Networks under Challenges

    Get PDF
    Communication networks, in particular the Internet, face a variety of challenges that can disrupt our daily lives resulting in the loss of human lives and significant financial costs in the worst cases. We define challenges as external events that trigger faults that eventually result in service failures. Understanding these challenges accordingly is essential for improvement of the current networks and for designing Future Internet architectures. This dissertation presents a taxonomy of challenges that can help evaluate design choices for the current and Future Internet. Graph models to analyse critical infrastructures are examined and a multilevel graph model is developed to study interdependencies between different networks. Furthermore, graph-theoretic heuristic optimisation algorithms are developed. These heuristic algorithms add links to increase the resilience of networks in the least costly manner and they are computationally less expensive than an exhaustive search algorithm. The performance of networks under random failures, targeted attacks, and correlated area-based challenges are evaluated by the challenge simulation module that we developed. The GpENI Future Internet testbed is used to conduct experiments to evaluate the performance of the heuristic algorithms developed

    QuON: Ein P2P-Protokoll fĂŒr skalierbare und latenzarme virtuelle Welten

    Get PDF
    corecore