238 research outputs found

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    The use of computational intelligence for security in named data networking

    Get PDF
    Information-Centric Networking (ICN) has recently been considered as a promising paradigm for the next-generation Internet, shifting from the sender-driven end-to-end communication paradigma to a receiver-driven content retrieval paradigm. In ICN, content -rather than hosts, like in IP-based design- plays the central role in the communications. This change from host-centric to content-centric has several significant advantages such as network load reduction, low dissemination latency, scalability, etc. One of the main design requirements for the ICN architectures -since the beginning of their design- has been strong security. Named Data Networking (NDN) (also referred to as Content-Centric Networking (CCN) or Data-Centric Networking (DCN)) is one of these architectures that are the focus of an ongoing research effort that aims to become the way Internet will operate in the future. Existing research into security of NDN is at an early stage and many designs are still incomplete. To make NDN a fully working system at Internet scale, there are still many missing pieces to be filled in. In this dissertation, we study the four most important security issues in NDN in order to defense against new forms of -potentially unknown- attacks, ensure privacy, achieve high availability, and block malicious network traffics belonging to attackers or at least limit their effectiveness, i.e., anomaly detection, DoS/DDoS attacks, congestion control, and cache pollution attacks. In order to protect NDN infrastructure, we need flexible, adaptable and robust defense systems which can make intelligent -and real-time- decisions to enable network entities to behave in an adaptive and intelligent manner. In this context, the characteristics of Computational Intelligence (CI) methods such as adaption, fault tolerance, high computational speed and error resilient against noisy information, make them suitable to be applied to the problem of NDN security, which can highlight promising new research directions. Hence, we suggest new hybrid CI-based methods to make NDN a more reliable and viable architecture for the future Internet.Information-Centric Networking (ICN) ha sido recientemente considerado como un paradigma prometedor parala nueva generación de Internet, pasando del paradigma de la comunicación de extremo a extremo impulsada por el emisora un paradigma de obtención de contenidos impulsada por el receptor. En ICN, el contenido (más que los nodos, como sucede en redes IPactuales) juega el papel central en las comunicaciones. Este cambio de "host-centric" a "content-centric" tiene varias ventajas importantes como la reducción de la carga de red, la baja latencia, escalabilidad, etc. Uno de los principales requisitos de diseño para las arquitecturas ICN (ya desde el principiode su diseño) ha sido una fuerte seguridad. Named Data Networking (NDN) (también conocida como Content-Centric Networking (CCN) o Data-Centric Networking (DCN)) es una de estas arquitecturas que son objetode investigación y que tiene como objetivo convertirse en la forma en que Internet funcionará en el futuro. Laseguridad de NDN está aún en una etapa inicial. Para hacer NDN un sistema totalmente funcional a escala de Internet, todavía hay muchas piezas que faltan por diseñar. Enesta tesis, estudiamos los cuatro problemas de seguridad más importantes de NDN, para defendersecontra nuevas formas de ataques (incluyendo los potencialmente desconocidos), asegurar la privacidad, lograr una alta disponibilidad, y bloquear los tráficos de red maliciosos o al menos limitar su eficacia. Estos cuatro problemas son: detección de anomalías, ataques DoS / DDoS, control de congestión y ataques de contaminación caché. Para solventar tales problemas necesitamos sistemas de defensa flexibles, adaptables y robustos que puedantomar decisiones inteligentes en tiempo real para permitir a las entidades de red que se comporten de manera rápida e inteligente. Es por ello que utilizamos Inteligencia Computacional (IC), ya que sus características (la adaptación, la tolerancia a fallos, alta velocidad de cálculo y funcionamiento adecuado con información con altos niveles de ruido), la hace adecuada para ser aplicada al problema de la seguridad ND

    A modified mayfly-SVM approach for early detection of type 2 diabetes mellitus

    Get PDF
    Diabetes mellitus is a chronic disease that affects many people in the world badly. Early diagnosis of this disease is of paramount importance as physicians and patients can work towards prevention and mitigation of future complications. Hence, there is a necessity to develop a system that diagnoses type 2 diabetes mellitus (T2DM) at an early stage. Recently, large number of studies have emerged with prediction models to diagnose T2DM. Most importantly, published literature lacks the availability of multi-class studies. Therefore, the primary objective of the study is development of multi-class predictive model by taking advantage of routinely available clinical data in diagnosing T2DM using machine learning algorithms. In this work, modified mayfly-support vector machine is implemented to notice the prediabetic stage accurately. To assess the effectiveness of proposed model, a comparative study was undertaken and was contrasted with T2DM prediction models developed by other researchers from last five years. Proposed model was validated over data collected from local hospitals and the benchmark PIMA dataset available on UCI repository. The study reveals that modified Mayfly-SVM has a considerable edge over metaheuristic optimization algorithms in local as well as global searching capabilities and has attained maximum test accuracy of 94.5% over PIMA

    Multiobjective programming for type-2 hierarchical fuzzy inference trees

    Get PDF
    This paper proposes a design of hierarchical fuzzy inference tree (HFIT). An HFIT produces an optimum tree-like structure. Specifically, a natural hierarchical structure that accommodates simplicity by combining several low-dimensional fuzzy inference systems (FISs). Such a natural hierarchical structure provides a high degree of approximation accuracy. The construction of HFIT takes place in two phases. Firstly, a nondominated sorting based multiobjective genetic programming (MOGP) is applied to obtain a simple tree structure (low model’s complexity) with a high accuracy. Secondly, the differential evolution algorithm is applied to optimize the obtained tree’s parameters. In the obtained tree, each node has a different input’s combination, where the evolutionary process governs the input’s combination. Hence, HFIT nodes are heterogeneous in nature, which leads to a high diversity among the rules generated by the HFIT. Additionally, the HFIT provides an automatic feature selection because it uses MOGP for the tree’s structural optimization that accept inputs only relevant to the knowledge contained in data. The HFIT was studied in the context of both type-1 and type-2 FISs, and its performance was evaluated through six application problems. Moreover, the proposed multiobjective HFIT was compared both theoretically and empirically with recently proposed FISs methods from the literature, such as McIT2FIS, TSCIT2FNN, SIT2FNN, RIT2FNS-WB, eT2FIS, MRIT2NFS, IT2FNN-SVR, etc. From the obtained results, it was found that the HFIT provided less complex and highly accurate models compared to the models produced by most of the other methods. Hence, the proposed HFIT is an efficient and competitive alternative to the other FISs for function approximation and feature selectio

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Protein Superfamily Classification using Computational Intelligence Techniques

    Get PDF
    The problem of protein superfamily classification is a challenging research area in Bioinformatics and has its major application in drug discovery. If a newly discovered protein which is responsible for the cause of new disease gets correctly classified to its superfamily, then the task of the drug analyst becomes much easier. The analyst can perform molecular docking to find the correct relative orientation of ligand for the protein. The ligand database can be searched for all possible orientations and conformations of the protein belonging to that superfamily paired with the ligand. Thus, the search space is reduced enormously as the protein-ligand pair is searched for a particular protein superfamily. Therefore, correct classification of proteins becomes a very challenging task as it guides the analysts to discover appropriate drugs. In this thesis, Neural Networks (NN), Multiobjective Genetic Algorithm (MOGA),and Support Vector Machine (SVM) are applied to perform the classification task.Adaptive MultiObjective Genetic Algorithm (AMOGA), which is a variation of MOGA is implemented for the structure optimization of Radial Basis Function Network (RBFN). The modification to MOGA is done based on the two key controlling parameters such as probability of crossover and probability of mutation. These values are adaptively varied based upon the performance of the algorithm, i.e., based upon the percentage of the total population present in the best non-domination level. The problem of finding the number of hidden centers remains a critical issue for the design of RBFN. The most optimal RBF network with good generalization ability can be derived from the pareto optimal set. Therefore, every solution of the pareto optimal set gives information regarding the specific samples to be chosen as hidden centers as well as the update weight matrix connecting the hidden and output layer. Principal Component Analysis (PCA) has been used for dimension reduction and significant feature extraction from long feature vector of amino acid sequences.In two-stage approach for protein superfamily classification, feature extraction process is carried in the first stage and design of the classifier has been proposed in the second stage with an overall objective to maximize the performance accuracy of the classifier. In the feature extraction phase, Genetic Algorithm(GA) based wrapper approach is used to select few eigen vectors from the PCA space which are encoded as binary strings in the chromosome. Using PCA-NSGA-II (non-dominated sorting GA), the non-dominated solutions obtained from the pareto front solves the trade-off problem by compromising between the number of eigen vectors selected and the accuracy obtained by the classifier. In the second stage, Recursive Orthogonal Least Square Algorithm (ROLSA) is used for training RBFN. ROLSA selects the optimal number o

    Chiller Load Forecasting Using Hyper-Gaussian Nets

    Get PDF
    Energy load forecasting for optimization of chiller operation is a topic that has been receiving increasing attention in recent years. From an engineering perspective, the methodology for designing and deploying a forecasting system for chiller operation should take into account several issues regarding prediction horizon, available data, selection of variables, model selection and adaptation. In this paper these issues are parsed to develop a neural forecaster. The method combines previous ideas such as basis expansions and local models. In particular, hyper-gaussians are proposed to provide spatial support (in input space) to models that can use auto-regressive, exogenous and past errors as variables, constituting thus a particular case of NARMAX modelling. Tests using real data from different world locations are given showing the expected performance of the proposal with respect to the objectives and allowing a comparison with other approaches.Unión Europea RTI2018-101897-B-I00Ministerio de Ciencia e Innovación RTI2018-101897-B-I0

    Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuristics

    Get PDF
    During the last years, research in applying machine learning (ML) to design efficient, effective and robust metaheuristics became increasingly popular. Many of those data driven metaheuristics have generated high quality results and represent state-of-the-art optimization algorithms. Although various appproaches have been proposed, there is a lack of a comprehensive survey and taxonomy on this research topic. In this paper we will investigate different opportunities for using ML into metaheuristics. We define uniformly the various ways synergies which might be achieved. A detailed taxonomy is proposed according to the concerned search component: target optimization problem, low-level and high-level components of metaheuristics. Our goal is also to motivate researchers in optimization to include ideas from ML into metaheuristics. We identify some open research issues in this topic which needs further in-depth investigations
    corecore