25,086 research outputs found

    Context-aware visual exploration of molecular databases

    Get PDF
    Facilitating the visual exploration of scientific data has received increasing attention in the past decade or so. Especially in life science related application areas the amount of available data has grown at a breath taking pace. In this paper we describe an approach that allows for visual inspection of large collections of molecular compounds. In contrast to classical visualizations of such spaces we incorporate a specific focus of analysis, for example the outcome of a biological experiment such as high throughout screening results. The presented method uses this experimental data to select molecular fragments of the underlying molecules that have interesting properties and uses the resulting space to generate a two dimensional map based on a singular value decomposition algorithm and a self organizing map. Experiments on real datasets show that the resulting visual landscape groups molecules of similar chemical properties in densely connected regions

    A combined measure for quantifying and qualifying the topology preservation of growing self-organizing maps

    Get PDF
    The Self-OrganizingMap (SOM) is a neural network model that performs an ordered projection of a high dimensional input space in a low-dimensional topological structure. The process in which such mapping is formed is defined by the SOM algorithm, which is a competitive, unsupervised and nonparametric method, since it does not make any assumption about the input data distribution. The feature maps provided by this algorithm have been successfully applied for vector quantization, clustering and high dimensional data visualization processes. However, the initialization of the network topology and the selection of the SOM training parameters are two difficult tasks caused by the unknown distribution of the input signals. A misconfiguration of these parameters can generate a feature map of low-quality, so it is necessary to have some measure of the degree of adaptation of the SOM network to the input data model. The topologypreservation is the most common concept used to implement this measure. Several qualitative and quantitative methods have been proposed for measuring the degree of SOM topologypreservation, particularly using Kohonen's model. In this work, two methods for measuring the topologypreservation of the Growing Cell Structures (GCSs) model are proposed: the topographic function and the topology preserving ma

    Neural Networks for Complex Data

    Full text link
    Artificial neural networks are simple and efficient machine learning tools. Defined originally in the traditional setting of simple vector data, neural network models have evolved to address more and more difficulties of complex real world problems, ranging from time evolving data to sophisticated data structures such as graphs and functions. This paper summarizes advances on those themes from the last decade, with a focus on results obtained by members of the SAMM team of Universit\'e Paris

    DAMEWARE - Data Mining & Exploration Web Application Resource

    Get PDF
    Astronomy is undergoing through a methodological revolution triggered by an unprecedented wealth of complex and accurate data. DAMEWARE (DAta Mining & Exploration Web Application and REsource) is a general purpose, Web-based, Virtual Observatory compliant, distributed data mining framework specialized in massive data sets exploration with machine learning methods. We present the DAMEWARE (DAta Mining & Exploration Web Application REsource) which allows the scientific community to perform data mining and exploratory experiments on massive data sets, by using a simple web browser. DAMEWARE offers several tools which can be seen as working environments where to choose data analysis functionalities such as clustering, classification, regression, feature extraction etc., together with models and algorithms.Comment: User Manual of the DAMEWARE Web Application, 51 page
    corecore