1,373 research outputs found

    Online planning for multi-robot active perception with self-organising maps

    Full text link
    © 2017, Springer Science+Business Media, LLC, part of Springer Nature. We propose a self-organising map (SOM) algorithm as a solution to a new multi-goal path planning problem for active perception and data collection tasks. We optimise paths for a multi-robot team that aims to maximally observe a set of nodes in the environment. The selected nodes are observed by visiting associated viewpoint regions defined by a sensor model. The key problem characteristics are that the viewpoint regions are overlapping polygonal continuous regions, each node has an observation reward, and the robots are constrained by travel budgets. The SOM algorithm jointly selects and allocates nodes to the robots and finds favourable sequences of sensing locations. The algorithm has a runtime complexity that is polynomial in the number of nodes to be observed and the magnitude of the relative weighting of rewards. We show empirically the runtime is sublinear in the number of robots. We demonstrate feasibility for the active perception task of observing a set of 3D objects. The viewpoint regions consider sensing ranges and self-occlusions, and the rewards are measured as discriminability in the ensemble of shape functions feature space. Exploration objectives for online tasks where the environment is only partially known in advance are modelled by introducing goal regions in unexplored space. Online replanning is performed efficiently by adapting previous solutions as new information becomes available. Simulations were performed using a 3D point-cloud dataset from a real robot in a large outdoor environment. Our results show the proposed methods enable multi-robot planning for online active perception tasks with continuous sets of candidate viewpoints and long planning horizons

    An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective

    Get PDF
    In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to “see” the whole robots’ workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning

    Planning Algorithms for Multi-Robot Active Perception

    Get PDF
    A fundamental task of robotic systems is to use on-board sensors and perception algorithms to understand high-level semantic properties of an environment. These semantic properties may include a map of the environment, the presence of objects, or the parameters of a dynamic field. Observations are highly viewpoint dependent and, thus, the performance of perception algorithms can be improved by planning the motion of the robots to obtain high-value observations. This motivates the problem of active perception, where the goal is to plan the motion of robots to improve perception performance. This fundamental problem is central to many robotics applications, including environmental monitoring, planetary exploration, and precision agriculture. The core contribution of this thesis is a suite of planning algorithms for multi-robot active perception. These algorithms are designed to improve system-level performance on many fronts: online and anytime planning, addressing uncertainty, optimising over a long time horizon, decentralised coordination, robustness to unreliable communication, predicting plans of other agents, and exploiting characteristics of perception models. We first propose the decentralised Monte Carlo tree search algorithm as a generally-applicable, decentralised algorithm for multi-robot planning. We then present a self-organising map algorithm designed to find paths that maximally observe points of interest. Finally, we consider the problem of mission monitoring, where a team of robots monitor the progress of a robotic mission. A spatiotemporal optimal stopping algorithm is proposed and a generalisation for decentralised monitoring. Experimental results are presented for a range of scenarios, such as marine operations and object recognition. Our analytical and empirical results demonstrate theoretically-interesting and practically-relevant properties that support the use of the approaches in practice

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    Motion Planning

    Get PDF
    Motion planning is a fundamental function in robotics and numerous intelligent machines. The global concept of planning involves multiple capabilities, such as path generation, dynamic planning, optimization, tracking, and control. This book has organized different planning topics into three general perspectives that are classified by the type of robotic applications. The chapters are a selection of recent developments in a) planning and tracking methods for unmanned aerial vehicles, b) heuristically based methods for navigation planning and routes optimization, and c) control techniques developed for path planning of autonomous wheeled platforms

    Terrain Representation And Reasoning In Computer Generated Forces : A Survey Of Computer Generated Forces Systems And How They Represent And Reason About Terrain

    Get PDF
    Report on a survey of computer systems used to produce realistic or intelligent behavior by autonomous entities in simulation systems. In particular, it is concerned with the data structures used by computer generated forces systems to represent terrain and the algorithmic approaches used by those systems to reason about terrain

    Path finding on a spherical self-organizing map using distance transformations

    Get PDF
    Spatialization methods create visualizations that allow users to analyze high-dimensional data in an intuitive manner and facilitates the extraction of meaningful information. Just as geographic maps are simpli ed representations of geographic spaces, these visualizations are esssentially maps of abstract data spaces that are created through dimensionality reduction. While we are familiar with geographic maps for path planning/ nding applications, research into using maps of high-dimensional spaces for such purposes has been largely ignored. However, literature has shown that it is possible to use these maps to track temporal and state changes within a high-dimensional space. A popular dimensionality reduction method that produces a mapping for these purposes is the Self-Organizing Map. By using its topology preserving capabilities with a colour-based visualization method known as the U-Matrix, state transitions can be visualized as trajectories on the resulting mapping. Through these trajectories, one can gather information on the transition path between two points in the original high-dimensional state space. This raises the interesting question of whether or not the Self-Organizing Map can be used to discover the transition path between two points in an n-dimensional space. In this thesis, we use a spherically structured Self-Organizing Map called the Geodesic Self-Organizing Map for dimensionality reduction and the creation of a topological mapping that approximates the n-dimensional space. We rst present an intuitive method for a user to navigate the surface of the Geodesic SOM. A new application of the distance transformation algorithm is then proposed to compute the path between two points on the surface of the SOM, which corresponds to two points in the data space. Discussions will then follow on how this application could be improved using some form of surface shape analysis. The new approach presented in this thesis would then be evaluated by analyzing the results of using the Geodesic SOM for manifold embedding and by carrying out data analyses using carbon dioxide emissions data

    Path finding on a spherical self-organizing map using distance transformations

    Get PDF
    Spatialization methods create visualizations that allow users to analyze high-dimensional data in an intuitive manner and facilitates the extraction of meaningful information. Just as geographic maps are simpli ed representations of geographic spaces, these visualizations are esssentially maps of abstract data spaces that are created through dimensionality reduction. While we are familiar with geographic maps for path planning/ nding applications, research into using maps of high-dimensional spaces for such purposes has been largely ignored. However, literature has shown that it is possible to use these maps to track temporal and state changes within a high-dimensional space. A popular dimensionality reduction method that produces a mapping for these purposes is the Self-Organizing Map. By using its topology preserving capabilities with a colour-based visualization method known as the U-Matrix, state transitions can be visualized as trajectories on the resulting mapping. Through these trajectories, one can gather information on the transition path between two points in the original high-dimensional state space. This raises the interesting question of whether or not the Self-Organizing Map can be used to discover the transition path between two points in an n-dimensional space. In this thesis, we use a spherically structured Self-Organizing Map called the Geodesic Self-Organizing Map for dimensionality reduction and the creation of a topological mapping that approximates the n-dimensional space. We rst present an intuitive method for a user to navigate the surface of the Geodesic SOM. A new application of the distance transformation algorithm is then proposed to compute the path between two points on the surface of the SOM, which corresponds to two points in the data space. Discussions will then follow on how this application could be improved using some form of surface shape analysis. The new approach presented in this thesis would then be evaluated by analyzing the results of using the Geodesic SOM for manifold embedding and by carrying out data analyses using carbon dioxide emissions data

    2017 SCAT (Shoreline Cleanup Assessment Technique) Workshop Report

    Get PDF
    On January 18-19, 2017, the Coastal Response Research Center (CRRC) and the National Oceanic and Atmospheric Administration (NOAA) Office of Response and Restoration (ORR) Gulf of Mexico (GOM) Disaster Response Center (DRC) co-sponsored the “Shoreline Cleanup Assessment Technique (SCAT) for Tomorrow” workshop at NOAA’s Disaster Response Center training facility in Mobile, AL. NOAA ORR supports the U.S. Coast Guard (USCG) in its role in emergency response (Emergency Response Division [ERD]) and also overseas damage assessment and restoration (Assessment and Restoration Division [ARD]). As part of its role, ORR updates existing tools and creates new ones related oil spill response, assessment and restoration. This workshop assisted ORR in advancing SCAT with respect to data standards and data exchange. Collecting, managing and sharing SCAT data collected or managed by different organizations can be difficult due to the various data methods and formats used. One of ORR’s major goals is to develop a common data standard for SCAT that is acceptable to federal and state agencies, and industry, and enhancing information sharing
    corecore