5,822 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Federated Robust Embedded Systems: Concepts and Challenges

    Get PDF
    The development within the area of embedded systems (ESs) is moving rapidly, not least due to falling costs of computation and communication equipment. It is believed that increased communication opportunities will lead to the future ESs no longer being parts of isolated products, but rather parts of larger communities or federations of ESs, within which information is exchanged for the benefit of all participants. This vision is asserted by a number of interrelated research topics, such as the internet of things, cyber-physical systems, systems of systems, and multi-agent systems. In this work, the focus is primarily on ESs, with their specific real-time and safety requirements. While the vision of interconnected ESs is quite promising, it also brings great challenges to the development of future systems in an efficient, safe, and reliable way. In this work, a pre-study has been carried out in order to gain a better understanding about common concepts and challenges that naturally arise in federations of ESs. The work was organized around a series of workshops, with contributions from both academic participants and industrial partners with a strong experience in ES development. During the workshops, a portfolio of possible ES federation scenarios was collected, and a number of application examples were discussed more thoroughly on different abstraction levels, starting from screening the nature of interactions on the federation level and proceeding down to the implementation details within each ES. These discussions led to a better understanding of what can be expected in the future federated ESs. In this report, the discussed applications are summarized, together with their characteristics, challenges, and necessary solution elements, providing a ground for the future research within the area of communicating ESs

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    Hybrid clouds for data-Intensive, 5G-Enabled IoT applications: an overview, key issues and relevant architecture

    Get PDF
    Hybrid cloud multi-access edge computing (MEC) deployments have been proposed as efficient means to support Internet of Things (IoT) applications, relying on a plethora of nodes and data. In this paper, an overview on the area of hybrid clouds considering relevant research areas is given, providing technologies and mechanisms for the formation of such MEC deployments, as well as emphasizing several key issues that should be tackled by novel approaches, especially under the 5G paradigm. Furthermore, a decentralized hybrid cloud MEC architecture, resulting in a Platform-as-a-Service (PaaS) is proposed and its main building blocks and layers are thoroughly described. Aiming to offer a broad perspective on the business potential of such a platform, the stakeholder ecosystem is also analyzed. Finally, two use cases in the context of smart cities and mobile health are presented, aimed at showing how the proposed PaaS enables the development of respective IoT applications.Peer ReviewedPostprint (published version

    Process of change in organisations through eHealth: 2nd International eHealth Symposium 2010, Stuttgart, Germany, June 7 - 8, 2010 ; Proceedings edited by Stefan Kirn

    Get PDF
    Foreword: On behalf of the Organizing Committee, it is my pleasure to welcome you to Hohenheim, Stuttgart for the 2nd International eHealth Symposium which is themed 'Process of change in organisations through eHealth'. Starting with the inaugural event in 2009, which took place in Turku, Finland, we want to implement a tradition of international eHealth symposia. The presentations and associated papers in this proceedings give a current and representative outline of technical options, application potentials, usability, acceptance and potential for optimization in health care by ICT. We are pleased to present a high-quality program. This year we convey a unique opportunity for academic researchers and industry practitioners to report their state-of-the-art research findings in the domain of eHealth. The symposium aims to foster the international community by gathering experts from various countries such as Australia, Great Britain, Finland and Germany. A first step is done by this symposium which considers this interaction and delivers an insight into current advances made and open research questions. The organizers would like to take the opportunity to thank all the people which made the Symposium possible. We are pleased if both attendance to the 2nd International eHealth Symposium 2010 and reading of this proceedings give you answers to urging questions, a basis for critical discussions, references on interesting tasks and stimulations for new approaches. Table of Contents: Martin Sedlmayr, Andreas Becker, Hans-Ulrich Prokosch, Christian FlĂĽgel, Fritz Meier: OPAL Health - A Smart Object Network for Hospital Logistics // Rajeev K. Bali, M. Chris Gribbons, Vikraman Baskaran, Raouf NG Naguib: Perspectives on E-Health: the human touch // Falk Zwicker, Torsten Eymann: Why RFID projects in hospitals (necessarily) fail. Lesson from comparative studies // Nilmin Wickramasinghe, F. Moghimi, J. Schaffer: Designing an intelligent risk detection framework using knowledge discovery techniques to improve efficiency and accuracy of healthcare care decision making // Volker Viktor, Heiko Schellhorn: In search of an appropriate service model for telehealth in Germany // Simone Schillings, Julia Fernandes: Towards a reference model for telemedicine // Reima Suomi: Towards rewards awareness in health care information systems // Manuel Zwicker, JĂĽrgen Seitz, Nilmini Wickramasingh: Adaptions for e-kiosk systems to develop barrier-free terminals for handicapped persons --

    Wireless Sensor Networks and Real-Time Locating Systems to Fight against Maritime Piracy

    Get PDF
    There is a wide range of military and civil applications where Wireless Sensor Networks (WSNs) and Multi-Agent Systems (MASs) can be used for providing context-awareness for troops and special corps. On the one hand, WSNs comprise an ideal technology to develop Real-Time Locating Systems (RTLSs) aimed at indoor environments, where existing global navigation satellite systems do not work properly. On the other hand, agent-based architectures allow building autonomous and robust systems that are capable of working on highly dynamic scenarios. This paper presents two piracy scenarios where the n-Core platform can be applied. n-Core is a hardware and software platform intended for developing and deploying easily and quickly a wide variety of WSNs applications based on the ZigBee standard. In the first scenario a RTLS is deployed to support boarding and rescue operations. In the second scenario a multi-agent system is proposed to detect the unloading of illegal traffic of merchandise at ports
    • …
    corecore