1,000 research outputs found

    Decentralized Adaptive Helper Selection in Multi-channel P2P Streaming Systems

    Full text link
    In Peer-to-Peer (P2P) multichannel live streaming, helper peers with surplus bandwidth resources act as micro-servers to compensate the server deficiencies in balancing the resources between different channel overlays. With deployment of helper level between server and peers, optimizing the user/helper topology becomes a challenging task since applying well-known reciprocity-based choking algorithms is impossible due to the one-directional nature of video streaming from helpers to users. Because of selfish behavior of peers and lack of central authority among them, selection of helpers requires coordination. In this paper, we design a distributed online helper selection mechanism which is adaptable to supply and demand pattern of various video channels. Our solution for strategic peers' exploitation from the shared resources of helpers is to guarantee the convergence to correlated equilibria (CE) among the helper selection strategies. Online convergence to the set of CE is achieved through the regret-tracking algorithm which tracks the equilibrium in the presence of stochastic dynamics of helpers' bandwidth. The resulting CE can help us select proper cooperation policies. Simulation results demonstrate that our algorithm achieves good convergence, load distribution on helpers and sustainable streaming rates for peers

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    A COGNITIVE ARCHITECTURE FOR AMBIENT INTELLIGENCE

    Get PDF
    L’Ambient Intelligence (AmI) è caratterizzata dall’uso di sistemi pervasivi per monitorare l’ambiente e modificarlo secondo le esigenze degli utenti e rispettando vincoli definiti globalmente. Questi sistemi non possono prescindere da requisiti come la scalabilità e la trasparenza per l’utente. Una tecnologia che consente di raggiungere questi obiettivi è rappresentata dalle reti di sensori wireless (WSN), caratterizzate da bassi costi e bassa intrusività. Tuttavia, sebbene in grado di effettuare elaborazioni a bordo dei singoli nodi, le WSN non hanno da sole le capacità di elaborazione necessarie a supportare un sistema intelligente; d’altra parte senza questa attività di pre-elaborazione la mole di dati sensoriali può facilmente sopraffare un sistema centralizzato con un’eccessiva quantità di dettagli superflui. Questo lavoro presenta un’architettura cognitiva in grado di percepire e controllare l’ambiente di cui fa parte, basata su un nuovo approccio per l’estrazione di conoscenza a partire dai dati grezzi, attraverso livelli crescenti di astrazione. Le WSN sono utilizzate come strumento sensoriale pervasivo, le cui capacità computazionali vengono utilizzate per pre-elaborare i dati rilevati, in modo da consentire ad un sistema centralizzato intelligente di effettuare ragionamenti di alto livello. L’architettura proposta è stata utilizzata per sviluppare un testbed dotato degli strumenti hardware e software necessari allo sviluppo e alla gestione di applicazioni di AmI basate su WSN, il cui obiettivo principale sia il risparmio energetico. Per fare in modo che le applicazioni di AmI siano in grado di comunicare con il mondo esterno in maniera affidabile, per richiedere servizi ad agenti esterni, l’architettura è stata arricchita con un protocollo di gestione distribuita della reputazione. È stata inoltre sviluppata un’applicazione di esempio che sfrutta le caratteristiche del testbed, con l’obiettivo di controllare la temperatura in un ambiente lavorativo. Quest’applicazione rileva la presenza dell’utente attraverso un modulo per la fusione di dati multi-sensoriali basato su reti bayesiane, e sfrutta questa informazione in un controllore fuzzy multi-obiettivo che controlla gli attuatori sulla base delle preferenze dell’utente e del risparmio energetico.Ambient Intelligence (AmI) systems are characterized by the use of pervasive equipments for monitoring and modifying the environment according to users’ needs, and to globally defined constraints. Furthermore, such systems cannot ignore requirements about ubiquity, scalability, and transparency to the user. An enabling technology capable of accomplishing these goals is represented by Wireless Sensor Networks (WSNs), characterized by low-costs and unintrusiveness. However, although provided of in-network processing capabilities, WSNs do not exhibit processing features able to support comprehensive intelligent systems; on the other hand, without this pre-processing activities the wealth of sensory data may easily overwhelm a centralized AmI system, clogging it with superfluous details. This work proposes a cognitive architecture able to perceive, decide upon, and control the environment of which the system is part, based on a new approach to knowledge extraction from raw data, that addresses this issue at different abstraction levels. WSNs are used as the pervasive sensory tool, and their computational capabilities are exploited to remotely perform preliminary data processing. A central intelligent unit subsequently extracts higher-level concepts in order to carry on symbolic reasoning. The aim of the reasoning is to plan a sequence of actions that will lead the environment to a state as close as possible to the users’ desires, taking into account both implicit and explicit feedbacks from the users, while considering global system-driven goals, such as energy saving. The proposed conceptual architecture was exploited to develop a testbed providing the hardware and software tools for the development and management of AmI applications based on WSNs, whose main goal is energy saving for global sustainability. In order to make the AmI system able to communicate with the external world in a reliable way, when some services are required to external agents, the architecture was enriched with a distributed reputation management protocol. A sample application exploiting the testbed features was implemented for addressing temperature control in a work environment. Knowledge about the user’s presence is obtained through a multi-sensor data fusion module based on Bayesian networks, and this information is exploited by a multi-objective fuzzy controller that operates on actuators taking into account users’ preference and energy consumption constraints

    Peer-to-Peer Energy Trading in Smart Residential Environment with User Behavioral Modeling

    Get PDF
    Electric power systems are transforming from a centralized unidirectional market to a decentralized open market. With this shift, the end-users have the possibility to actively participate in local energy exchanges, with or without the involvement of the main grid. Rapidly reducing prices for Renewable Energy Technologies (RETs), supported by their ease of installation and operation, with the facilitation of Electric Vehicles (EV) and Smart Grid (SG) technologies to make bidirectional flow of energy possible, has contributed to this changing landscape in the distribution side of the traditional power grid. Trading energy among users in a decentralized fashion has been referred to as Peer- to-Peer (P2P) Energy Trading, which has attracted significant attention from the research and industry communities in recent times. However, previous research has mostly focused on engineering aspects of P2P energy trading systems, often neglecting the central role of users in such systems. P2P trading mechanisms require active participation from users to decide factors such as selling prices, storing versus trading energy, and selection of energy sources among others. The complexity of these tasks, paired with the limited cognitive and time capabilities of human users, can result sub-optimal decisions or even abandonment of such systems if performance is not satisfactory. Therefore, it is of paramount importance for P2P energy trading systems to incorporate user behavioral modeling that captures users’ individual trading behaviors, preferences, and perceived utility in a realistic and accurate manner. Often, such user behavioral models are not known a priori in real-world settings, and therefore need to be learned online as the P2P system is operating. In this thesis, we design novel algorithms for P2P energy trading. By exploiting a variety of statistical, algorithmic, machine learning, and behavioral economics tools, we propose solutions that are able to jointly optimize the system performance while taking into account and learning realistic model of user behavior. The results in this dissertation has been published in IEEE Transactions on Green Communications and Networking 2021, Proceedings of IEEE Global Communication Conference 2022, Proceedings of IEEE Conference on Pervasive Computing and Communications 2023 and ACM Transactions on Evolutionary Learning and Optimization 2023

    Fairness-aware Competitive Bidding Influence Maximization in Social Networks

    Full text link
    Competitive Influence Maximization (CIM) has been studied for years due to its wide application in many domains. Most current studies primarily focus on the micro-level optimization by designing policies for one competitor to defeat its opponents. Furthermore, current studies ignore the fact that many influential nodes have their own starting prices, which may lead to inefficient budget allocation. In this paper, we propose a novel Competitive Bidding Influence Maximization (CBIM) problem, where the competitors allocate budgets to bid for the seeds attributed to the platform during multiple bidding rounds. To solve the CBIM problem, we propose a Fairness-aware Multi-agent Competitive Bidding Influence Maximization (FMCBIM) framework. In this framework, we present a Multi-agent Bidding Particle Environment (MBE) to model the competitors' interactions, and design a starting price adjustment mechanism to model the dynamic bidding environment. Moreover, we put forward a novel Multi-agent Competitive Bidding Influence Maximization (MCBIM) algorithm to optimize competitors' bidding policies. Extensive experiments on five datasets show that our work has good efficiency and effectiveness.Comment: IEEE Transactions on Computational Social Systems (TCSS), 2023, early acces

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore