5,852 research outputs found

    Game Theoretic Efficient Radio Resource Allocation in 5G Resilient Networks:A Data Driven Approach

    Get PDF
    In recent years, 5G resilient networks have gained significant attention in the wireless industry. The prime concern of commercial networks is to maximize network capacity to increase their revenue. However, in disaster situations during outages when cell sites are down, instead of capacity, coverage becomes predominant. In this paper, we propose a game theory–based optimal resource allocation scheme, while aiming to maximize the sum rate and coverage probability for the uplink transmissions in disaster situations. The proposed hierarchical game theoretical framework optimizes the uplink performance in multitier heterogeneous network with pico base stations and femto access points overlaid under a macro base station. The test simulations are based on a real‐time data set obtained for a predefined amount of time. The data statistics are then manipulated to create practical disaster situations. The solution for the noncooperative game has been obtained by using pure strategy Nash equilibrium. We perform simulations with different failure rates and the results show that the proposed scheme improves the sum rate and outage probability by significant margin with or without disaster scenario

    The Role of the Internet of Things in Network Resilience

    Get PDF
    Disasters lead to devastating structural damage not only to buildings and transport infrastructure, but also to other critical infrastructure, such as the power grid and communication backbones. Following such an event, the availability of minimal communication services is however crucial to allow efficient and coordinated disaster response, to enable timely public information, or to provide individuals in need with a default mechanism to post emergency messages. The Internet of Things consists in the massive deployment of heterogeneous devices, most of which battery-powered, and interconnected via wireless network interfaces. Typical IoT communication architectures enables such IoT devices to not only connect to the communication backbone (i.e. the Internet) using an infrastructure-based wireless network paradigm, but also to communicate with one another autonomously, without the help of any infrastructure, using a spontaneous wireless network paradigm. In this paper, we argue that the vast deployment of IoT-enabled devices could bring benefits in terms of data network resilience in face of disaster. Leveraging their spontaneous wireless networking capabilities, IoT devices could enable minimal communication services (e.g. emergency micro-message delivery) while the conventional communication infrastructure is out of service. We identify the main challenges that must be addressed in order to realize this potential in practice. These challenges concern various technical aspects, including physical connectivity requirements, network protocol stack enhancements, data traffic prioritization schemes, as well as social and political aspects

    ADMINISTRATIVE RESILIENCE: EVALUATING THE ADAPTIVE CAPACITY OF ADMINISTRATIVE SYSTEMS THAT OPERATE IN DYNAMIC AND UNCERTAIN CONDITIONS

    Get PDF
    An administrative system's capacity to take effective action can be undermined by the uncertain and rapidly changing conditions that are often generated by disruptive events. Resilience has been identified as the most practical approach to overcoming this administrative problem. Resilience has multiple definitions, one of which is "[t]he capacity of a system, community or society potentially exposed to hazards to adapt, by resisting or changing in order to reach and maintain an acceptable level of functioning and structure. This is determined by the degree to which the social system is capable of organizing itself to increase this capacity for learning from past disasters for better future protection and to improve risk reduction measures" (International Strategy for Disaster Reduction 2005, p. 4). This study argues that, in contrast to conventional administrative systems, resilient administrative systems have the capacity to successfully respond to disruptive events because they possess the organizational stability to maintain the effectiveness of the community in which it operates and the organizational flexibility needed to adapt to uncertain and rapidly changing conditions.This study advances a framework for administrative resilience, which can be used to evaluate the resilience of administrative systems. Through the use of a nested case study that employed a mixed-methods design, the framework was used to investigate the administrative response system that operated in Indonesia after the Great Sumatran Earthquake and Tsunami of 26 December 2004. The study generated a number of findings. First, the system was a system of sub-systems, and the organizations that operated in the domestic sub-system possessed extremely low levels of resilience. The consequence was that the domestic sub-system could not formulate an effective response to the constraints present in the post-tsunami environment. Second, it was the inclusion of the organizations in the international sub-system, which brought with them high levels of resources, technology and experience, as well as the interactions exchanged between international and domestic organizations, which improved the resilience of the overall administrative system. These findings indicate that policy makers can promote the development of administrative resilience through the development and implementation of sociotechnical infrastructures that facilitate administrative action

    Why Information Matters: A Foundation for Resilience

    Get PDF
    Embracing Change: The Critical Role of Information, a research project by the Internews' Center for Innovation & Learning, supported by the Rockefeller Foundation, combines Internews' longstanding effort to highlight the important role ofinformation with Rockefeller's groundbreaking work on resilience. The project focuses on three major aspects:- Building knowledge around the role of information in empowering communities to understand and adapt to different types of change: slow onset, long-term, and rapid onset / disruptive;- Identifying strategies and techniques for strengthening information ecosystems to support behavioral adaptation to disruptive change; and- Disseminating knowledge and principles to individuals, communities, the private sector, policymakers, and other partners so that they can incorporate healthy information ecosystems as a core element of their social resilience strategies

    Architecture design for disaster resilient management network using D2D technology

    Get PDF
    Huge damages from natural disasters, such as earthquakes, floods, landslide, tsunamis, have been reported in recent years, claiming many lives, rendering millions homeless and causing huge financial losses worldwide. The lack of effective communication between the public rescue/safety agencies, rescue teams, first responders and trapped survivors/victims makes the situation even worse. Factors like dysfunctional communication networks, limited communications capacity, limited resources/services, data transformation and effective evaluation, energy, and power deficiency cause unnecessary hindrance in rescue and recovery services during a disaster. The new wireless communication technologies are needed to enhance life-saving capabilities and rescue services. In general, in order to improve societal resilience towards natural catastrophes and develop effective communication infrastructure, innovative approaches need to be initiated to provide improved quality, better connectivity in the events of natural and human disasters. In this thesis, a disaster resilient network architecture is proposed and analysed using multi-hop communications, clustering, energy harvesting, throughput optimization, reliability enhancement, adaptive selection, and low latency communications. It also examines the importance of mode selection, power management, frequency and time resource allocation to realize the promises of Long-term Evolution (LTE) Device to Device (D2D) communication. In particular, to support resilient and energy efficient communication in disaster-affected areas. This research is examined by thorough and vigorous simulations and validated through mathematical modelling. Overall, the impact of this research is twofold: i) it provides new technologies for effective inter- and intra-agency coordination system during a disaster event by establishing a stronger and resilient communication; and ii) It offers a potential solution for stakeholders such as governments, rescue teams, and general public with new informed information on how to establish effective policies to cope with challenges before, during and after the disaster events

    Drone Empowered Small Cellular Disaster Recovery Networks for Resilient Smart Cities

    Get PDF
    Resilient communication networks, which can continue operations even after a calamity, will be a central feature of future smart cities. Recent proliferation of drones propelled by the availability of cheap commodity hardware presents a new avenue for provisioning such networks. In particular, with the advent of Google’s Sky Bender and Facebook’s internet drone, drone empowered small cellular networks (DSCNs) are no longer fantasy. DSCNs are attractive solution for public safety networks because of swift deployment capability and intrinsic network reconfigurability. While DSCNs have received some attention in the recent past, the design space of such networks has not been extensively traversed. In particular, co-existence of such networks with an operational ground cellular network in a post-disaster situation has not been investigated. Moreover, design parameters such as optimal altitude and number of drone base stations, etc., as a function of destroyed base stations, propagation conditions, etc., have not been explored. In order to address these design issues, we present a comprehensive statistical framework which is developed from stochastic geometric perspective. We then employ the developed framework to investigate the impact of several parametric variations on the performance of the DSCNs. Without loss of any generality, in this article, the performance metric employed is coverage probability of a down-link mobile user. It is demonstrated that by intelligently selecting the number of drones and their corresponding altitudes, ground users coverage can be significantly enhanced. This is attained without incurring significant performance penalty to the mobile users which continue to be served from operating ground infrastructure

    Contrasting Views of Complexity and Their Implications For Network-Centric Infrastructures

    Get PDF
    There exists a widely recognized need to better understand and manage complex “systems of systems,” ranging from biology, ecology, and medicine to network-centric technologies. This is motivating the search for universal laws of highly evolved systems and driving demand for new mathematics and methods that are consistent, integrative, and predictive. However, the theoretical frameworks available today are not merely fragmented but sometimes contradictory and incompatible. We argue that complexity arises in highly evolved biological and technological systems primarily to provide mechanisms to create robustness. However, this complexity itself can be a source of new fragility, leading to “robust yet fragile” tradeoffs in system design. We focus on the role of robustness and architecture in networked infrastructures, and we highlight recent advances in the theory of distributed control driven by network technologies. This view of complexity in highly organized technological and biological systems is fundamentally different from the dominant perspective in the mainstream sciences, which downplays function, constraints, and tradeoffs, and tends to minimize the role of organization and design

    Performance Analysis of UAV Enabled Disaster Recovery Networks: A Stochastic Geometric Framework Based on Cluster Processes

    Get PDF
    In this paper, we develop a comprehensive statistical framework to characterize and model large-scale unmanned aerial vehicle-enabled post-disaster recovery cellular networks. In the case of natural or man-made disasters, the cellular network is vulnerable to destruction resulting in coverage voids or coverage holes. Drone-based small cellular networks (DSCNs) can be rapidly deployed to fill such coverage voids. Due to capacity and back-hauling limitations on drone small cells (DSCs), each coverage hole requires a multitude of DSCs to meet the shortfall coverage at a desired quality-of-service. Moreover, ground users also tend to cluster in hot-spots in a post-disaster scenario. Motivated by this fact, we consider the clustered deployment of DSCs around the site of a destroyed BS. Joint consideration partially operating BSs and deployed DSCs yields a unique topology for such public safety networks. Borrowing tools from stochastic geometry, we develop a statistical framework to quantify the down-link performance of a DSCN. Our proposed clustering mechanism extends the traditional Matern and Thomas cluster processes to a more general case, where cluster size is dependent upon the size of the coverage hole. We then employ the newly developed framework to find closed-form expressions (later verified by Monte-Carlo simulations) to quantify the coverage probability, area spectral efficiency, and the energy efficiency for the down-link mobile user. Finally, we explore several design parameters (for both of the adopted cluster processes) that address optimal deployment of the network (i.e., number of drones per cluster, drone altitudes, and transmit power ratio between the traditional surviving base stations and the drone base stations)
    • 

    corecore