6,261 research outputs found

    Structure-Encoding Auxiliary Tasks for Improved Visual Representation in Vision-and-Language Navigation

    Full text link
    In Vision-and-Language Navigation (VLN), researchers typically take an image encoder pre-trained on ImageNet without fine-tuning on the environments that the agent will be trained or tested on. However, the distribution shift between the training images from ImageNet and the views in the navigation environments may render the ImageNet pre-trained image encoder suboptimal. Therefore, in this paper, we design a set of structure-encoding auxiliary tasks (SEA) that leverage the data in the navigation environments to pre-train and improve the image encoder. Specifically, we design and customize (1) 3D jigsaw, (2) traversability prediction, and (3) instance classification to pre-train the image encoder. Through rigorous ablations, our SEA pre-trained features are shown to better encode structural information of the scenes, which ImageNet pre-trained features fail to properly encode but is crucial for the target navigation task. The SEA pre-trained features can be easily plugged into existing VLN agents without any tuning. For example, on Test-Unseen environments, the VLN agents combined with our SEA pre-trained features achieve absolute success rate improvement of 12% for Speaker-Follower, 5% for Env-Dropout, and 4% for AuxRN

    Bridging the visual gap in VLN via semantically richer instructions

    Full text link
    The Visual-and-Language Navigation (VLN) task requires understanding a textual instruction to navigate a natural indoor environment using only visual information. While this is a trivial task for most humans, it is still an open problem for AI models. In this work, we hypothesize that poor use of the visual information available is at the core of the low performance of current models. To support this hypothesis, we provide experimental evidence showing that state-of-the-art models are not severely affected when they receive just limited or even no visual data, indicating a strong overfitting to the textual instructions. To encourage a more suitable use of the visual information, we propose a new data augmentation method that fosters the inclusion of more explicit visual information in the generation of textual navigational instructions. Our main intuition is that current VLN datasets include textual instructions that are intended to inform an expert navigator, such as a human, but not a beginner visual navigational agent, such as a randomly initialized DL model. Specifically, to bridge the visual semantic gap of current VLN datasets, we take advantage of metadata available for the Matterport3D dataset that, among others, includes information about object labels that are present in the scenes. Training a state-of-the-art model with the new set of instructions increase its performance by 8% in terms of success rate on unseen environments, demonstrating the advantages of the proposed data augmentation method.Comment: Accepted in ECCV 2022. Research completed on November 21, 202

    Evolving Graphical Planner: Contextual Global Planning for Vision-and-Language Navigation

    Full text link
    The ability to perform effective planning is crucial for building an instruction-following agent. When navigating through a new environment, an agent is challenged with (1) connecting the natural language instructions with its progressively growing knowledge of the world; and (2) performing long-range planning and decision making in the form of effective exploration and error correction. Current methods are still limited on both fronts despite extensive efforts. In this paper, we introduce the Evolving Graphical Planner (EGP), a model that performs global planning for navigation based on raw sensory input. The model dynamically constructs a graphical representation, generalizes the action space to allow for more flexible decision making, and performs efficient planning on a proxy graph representation. We evaluate our model on a challenging Vision-and-Language Navigation (VLN) task with photorealistic images and achieve superior performance compared to previous navigation architectures. For instance, we achieve a 53% success rate on the test split of the Room-to-Room navigation task through pure imitation learning, outperforming previous navigation architectures by up to 5%
    corecore